1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
%global _empty_manifest_terminate_build 0
Name: python-gpboost
Version: 1.1.0
Release: 1
Summary: GPBoost Python Package
License: Apache License, Version 2.0, + see LICENSE file
URL: https://github.com/fabsig/GPBoost
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/03/fc/0533efd81975d0ae3ae0c9540394d851f9afdb1d6a8c31b6b2e9dbf9e83f/gpboost-1.1.0.tar.gz
Requires: python3-wheel
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-scipy
Requires: python3-scikit-learn
Requires: python3-dask[array]
Requires: python3-dask[dataframe]
Requires: python3-dask[distributed]
Requires: python3-pandas
%description
<img src="https://github.com/fabsig/GPBoost/blob/master/docs/logo/gpboost_logo.png?raw=true"
alt="GPBoost icon"
align = "right"
width="30%" />
# GPBoost Python Package
[](https://github.com/fabsig/GPBoost/blob/master/LICENSE)
[<img src="https://img.shields.io/pypi/pyversions/gpboost.svg?logo=python&logoColor=white">](https://pypi.org/project/gpboost)
[<img src="https://img.shields.io/pypi/v/gpboost.svg?logo=pypi&logoColor=white">](https://pypi.org/project/gpboost)
[<img src="https://pepy.tech/badge/gpboost">](https://pepy.tech/project/gpboost)
This is the Python package implementation of the GPBoost library. See https://github.com/fabsig/GPBoost for more information on the modeling background and the software implementation.
### Table of Contents
* [Examples and documentation](#examples-and-documentation)
* [Installation](#installation)
* [Installation from PyPI](#installation-from-pypi-using-precompiled-binaries)
* [Installation from source](#installation-from-source)
## Examples and documentation
* [**Detailed Python examples**](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide):
* [GPBoost and LaGaBoost algorithms](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/GPBoost_algorithm.py) for Gaussian data ("regression") and non-Gaussian data ("classification", etc.) combining tree-boosting with Gaussian process and random effects models
* [Parameter tuning](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/parameter_tuning.py) using deterministic or random grid search
* [Generalized linear Gaussian process and mixed effects models](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/generalized_linear_Gaussian_process_mixed_effects_models.py)
* [GPBoost algorithm applied to panel data](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/panel_data_example.py)
* The **documentation at [https://gpboost.readthedocs.io](https://gpboost.readthedocs.io/en/latest/Python_package.html)**
* Blog posts on how to
* [Combine tree-boosting with grouped random effects models](https://towardsdatascience.com/tree-boosted-mixed-effects-models-4df610b624cb)
* [Combine tree-boosting with Gaussian processes for spatial data](https://towardsdatascience.com/tree-boosting-for-spatial-data-789145d6d97d)
* [GPBoost for generalized linear mixed effects models (GLMMs)](https://towardsdatascience.com/generalized-linear-mixed-effects-models-in-r-and-python-with-gpboost-89297622820c)
* [Demo](https://htmlpreview.github.io/?https://github.com/fabsig/GPBoost/blob/master/examples/GPBoost_demo.html) on how GPBoost can be used in R and Python
## Installation
#### Before you install
* [setuptools](https://pypi.org/project/setuptools) is needed. You can install this using ``pip install setuptools -U``
* 32-bit Python is not supported. Please install the 64-bit version. See [build 32-bit version with 32-bit Python section](#build-32-bit-version-with-32-bit-python).
### Installation from [PyPI](https://pypi.org/project/gpboost) using precompiled binaries
```sh
pip install gpboost -U
```
#### Requirements
* For **Windows** users, [VC runtime](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads) is needed if **Visual Studio** (2015 or newer) is not installed.
* For **Linux** users, **glibc** >= 2.14 is required.
* If you get an error message ``version `GLIBC_2.27' not found``, you need to [install from source](#installation-from-source).
* In rare cases, when you get the ``OSError: libgomp.so.1: cannot open shared object file: No such file or directory`` error when importing GPBoost, you need to install the OpenMP runtime library separately (use your package manager and search for ``lib[g|i]omp`` for doing this).
* For **macOS** users:
* The library file in distribution wheels is built by the **Apple Clang** compiler. You need to install the **OpenMP** library. You can install the **OpenMP** library by the following command: ``brew install libomp``. <!-- (Xcode version 12.3 is used starting from GPBoost version 0.3.0) -->
* If you have an **arm64 Apple silicon** processor (e.g., M1 or M2) and experience problems, try the following steps:
* [uninstall homebrew](https://stackoverflow.com/questions/72890277/i-cant-uninstall-brew-on-macos-apple-silicon) (in case you have migrated from an older non-arm64 Mac)
* [install homebrew](https://treehouse.github.io/installation-guides/mac/homebrew) (to make sure that you have an arm64 version of libomp)
* install OpenMP (``brew install libomp``)
* remove existing python environments and install Miniforge (``brew install miniforge`` and ``conda init "$(basename "${SHELL}")"``)
### Installation from source
Installation from source can be either done from PyPI or GitHub.
#### Requirements for installation from source
* Installation from source requires that you have installed [**CMake**](https://cmake.org/).
* For **Linux** users, **glibc** >= 2.14 is required.
* In rare cases, you may need to install the OpenMP runtime library separately (use your package manager and search for ``lib[g|i]omp`` for doing this).
* For **macOS** users, you can perform installation either with **Apple Clang** or **gcc**.
* In case you prefer **Apple Clang**, you should install **OpenMP** (details for installation can be found in the [Installation Guide](https://github.com/fabsig/GPBoost/blob/master/docs/Installation_guide.rst#apple-clang)) first and **CMake** version 3.16 or higher is required. Only Apple Clang version 8.1 or higher is supported.
* In case you prefer **gcc**, you need to install it (details for installation can be found in the [Installation Guide](https://github.com/fabsig/GPBoost/blob/master/docs/Installation_guide.rst#gcc)) and specify compilers by running ``export CXX=g++-7 CC=gcc-7`` (replace "7" with the version of **gcc** installed on your machine) first.
* For **Windows** users, **Visual Studio** (or [VS Build Tools](https://visualstudio.microsoft.com/downloads/)) is needed.
#### Installation from source from PyPI
```sh
pip install --no-binary :all: gpboost
```
##### Build with MinGW-w64 on Windows
```sh
pip install gpboost --install-option=--mingw
```
* [CMake](https://cmake.org/) and [MinGW-w64](https://www.mingw-w64.org/) should be installed first.
##### Build 32-bit version with 32-bit Python
```sh
pip install gpboost --install-option=--bit32
```
By default, installation in an environment with 32-bit Python is prohibited. However, you can remove this prohibition on your own risk by passing the ``bit32`` option (not recommended).
#### Installation from source from GitHub
```sh
git clone --recursive https://github.com/fabsig/GPBoost.git
cd GPBoost/python-package
# export CXX=g++-7 CC=gcc-7 # macOS users, if you decided to compile with gcc, don't forget to specify compilers (replace "7" with version of gcc installed on your machine)
python setup.py install
```
Note: ``sudo`` (or administrator rights in **Windows**) may be needed to perform the command.
##### Build with MinGW-w64 on Windows
```sh
python setup.py install --mingw
```
* [CMake](https://cmake.org/) and [MinGW-w64](https://www.mingw-w64.org/) should be installed first.
If you get any errors during installation or due to any other reasons, you may want to build a dynamic library from source by any method you prefer and then just run ``python setup.py install --precompile``.
%package -n python3-gpboost
Summary: GPBoost Python Package
Provides: python-gpboost
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-gpboost
<img src="https://github.com/fabsig/GPBoost/blob/master/docs/logo/gpboost_logo.png?raw=true"
alt="GPBoost icon"
align = "right"
width="30%" />
# GPBoost Python Package
[](https://github.com/fabsig/GPBoost/blob/master/LICENSE)
[<img src="https://img.shields.io/pypi/pyversions/gpboost.svg?logo=python&logoColor=white">](https://pypi.org/project/gpboost)
[<img src="https://img.shields.io/pypi/v/gpboost.svg?logo=pypi&logoColor=white">](https://pypi.org/project/gpboost)
[<img src="https://pepy.tech/badge/gpboost">](https://pepy.tech/project/gpboost)
This is the Python package implementation of the GPBoost library. See https://github.com/fabsig/GPBoost for more information on the modeling background and the software implementation.
### Table of Contents
* [Examples and documentation](#examples-and-documentation)
* [Installation](#installation)
* [Installation from PyPI](#installation-from-pypi-using-precompiled-binaries)
* [Installation from source](#installation-from-source)
## Examples and documentation
* [**Detailed Python examples**](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide):
* [GPBoost and LaGaBoost algorithms](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/GPBoost_algorithm.py) for Gaussian data ("regression") and non-Gaussian data ("classification", etc.) combining tree-boosting with Gaussian process and random effects models
* [Parameter tuning](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/parameter_tuning.py) using deterministic or random grid search
* [Generalized linear Gaussian process and mixed effects models](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/generalized_linear_Gaussian_process_mixed_effects_models.py)
* [GPBoost algorithm applied to panel data](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/panel_data_example.py)
* The **documentation at [https://gpboost.readthedocs.io](https://gpboost.readthedocs.io/en/latest/Python_package.html)**
* Blog posts on how to
* [Combine tree-boosting with grouped random effects models](https://towardsdatascience.com/tree-boosted-mixed-effects-models-4df610b624cb)
* [Combine tree-boosting with Gaussian processes for spatial data](https://towardsdatascience.com/tree-boosting-for-spatial-data-789145d6d97d)
* [GPBoost for generalized linear mixed effects models (GLMMs)](https://towardsdatascience.com/generalized-linear-mixed-effects-models-in-r-and-python-with-gpboost-89297622820c)
* [Demo](https://htmlpreview.github.io/?https://github.com/fabsig/GPBoost/blob/master/examples/GPBoost_demo.html) on how GPBoost can be used in R and Python
## Installation
#### Before you install
* [setuptools](https://pypi.org/project/setuptools) is needed. You can install this using ``pip install setuptools -U``
* 32-bit Python is not supported. Please install the 64-bit version. See [build 32-bit version with 32-bit Python section](#build-32-bit-version-with-32-bit-python).
### Installation from [PyPI](https://pypi.org/project/gpboost) using precompiled binaries
```sh
pip install gpboost -U
```
#### Requirements
* For **Windows** users, [VC runtime](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads) is needed if **Visual Studio** (2015 or newer) is not installed.
* For **Linux** users, **glibc** >= 2.14 is required.
* If you get an error message ``version `GLIBC_2.27' not found``, you need to [install from source](#installation-from-source).
* In rare cases, when you get the ``OSError: libgomp.so.1: cannot open shared object file: No such file or directory`` error when importing GPBoost, you need to install the OpenMP runtime library separately (use your package manager and search for ``lib[g|i]omp`` for doing this).
* For **macOS** users:
* The library file in distribution wheels is built by the **Apple Clang** compiler. You need to install the **OpenMP** library. You can install the **OpenMP** library by the following command: ``brew install libomp``. <!-- (Xcode version 12.3 is used starting from GPBoost version 0.3.0) -->
* If you have an **arm64 Apple silicon** processor (e.g., M1 or M2) and experience problems, try the following steps:
* [uninstall homebrew](https://stackoverflow.com/questions/72890277/i-cant-uninstall-brew-on-macos-apple-silicon) (in case you have migrated from an older non-arm64 Mac)
* [install homebrew](https://treehouse.github.io/installation-guides/mac/homebrew) (to make sure that you have an arm64 version of libomp)
* install OpenMP (``brew install libomp``)
* remove existing python environments and install Miniforge (``brew install miniforge`` and ``conda init "$(basename "${SHELL}")"``)
### Installation from source
Installation from source can be either done from PyPI or GitHub.
#### Requirements for installation from source
* Installation from source requires that you have installed [**CMake**](https://cmake.org/).
* For **Linux** users, **glibc** >= 2.14 is required.
* In rare cases, you may need to install the OpenMP runtime library separately (use your package manager and search for ``lib[g|i]omp`` for doing this).
* For **macOS** users, you can perform installation either with **Apple Clang** or **gcc**.
* In case you prefer **Apple Clang**, you should install **OpenMP** (details for installation can be found in the [Installation Guide](https://github.com/fabsig/GPBoost/blob/master/docs/Installation_guide.rst#apple-clang)) first and **CMake** version 3.16 or higher is required. Only Apple Clang version 8.1 or higher is supported.
* In case you prefer **gcc**, you need to install it (details for installation can be found in the [Installation Guide](https://github.com/fabsig/GPBoost/blob/master/docs/Installation_guide.rst#gcc)) and specify compilers by running ``export CXX=g++-7 CC=gcc-7`` (replace "7" with the version of **gcc** installed on your machine) first.
* For **Windows** users, **Visual Studio** (or [VS Build Tools](https://visualstudio.microsoft.com/downloads/)) is needed.
#### Installation from source from PyPI
```sh
pip install --no-binary :all: gpboost
```
##### Build with MinGW-w64 on Windows
```sh
pip install gpboost --install-option=--mingw
```
* [CMake](https://cmake.org/) and [MinGW-w64](https://www.mingw-w64.org/) should be installed first.
##### Build 32-bit version with 32-bit Python
```sh
pip install gpboost --install-option=--bit32
```
By default, installation in an environment with 32-bit Python is prohibited. However, you can remove this prohibition on your own risk by passing the ``bit32`` option (not recommended).
#### Installation from source from GitHub
```sh
git clone --recursive https://github.com/fabsig/GPBoost.git
cd GPBoost/python-package
# export CXX=g++-7 CC=gcc-7 # macOS users, if you decided to compile with gcc, don't forget to specify compilers (replace "7" with version of gcc installed on your machine)
python setup.py install
```
Note: ``sudo`` (or administrator rights in **Windows**) may be needed to perform the command.
##### Build with MinGW-w64 on Windows
```sh
python setup.py install --mingw
```
* [CMake](https://cmake.org/) and [MinGW-w64](https://www.mingw-w64.org/) should be installed first.
If you get any errors during installation or due to any other reasons, you may want to build a dynamic library from source by any method you prefer and then just run ``python setup.py install --precompile``.
%package help
Summary: Development documents and examples for gpboost
Provides: python3-gpboost-doc
%description help
<img src="https://github.com/fabsig/GPBoost/blob/master/docs/logo/gpboost_logo.png?raw=true"
alt="GPBoost icon"
align = "right"
width="30%" />
# GPBoost Python Package
[](https://github.com/fabsig/GPBoost/blob/master/LICENSE)
[<img src="https://img.shields.io/pypi/pyversions/gpboost.svg?logo=python&logoColor=white">](https://pypi.org/project/gpboost)
[<img src="https://img.shields.io/pypi/v/gpboost.svg?logo=pypi&logoColor=white">](https://pypi.org/project/gpboost)
[<img src="https://pepy.tech/badge/gpboost">](https://pepy.tech/project/gpboost)
This is the Python package implementation of the GPBoost library. See https://github.com/fabsig/GPBoost for more information on the modeling background and the software implementation.
### Table of Contents
* [Examples and documentation](#examples-and-documentation)
* [Installation](#installation)
* [Installation from PyPI](#installation-from-pypi-using-precompiled-binaries)
* [Installation from source](#installation-from-source)
## Examples and documentation
* [**Detailed Python examples**](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide):
* [GPBoost and LaGaBoost algorithms](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/GPBoost_algorithm.py) for Gaussian data ("regression") and non-Gaussian data ("classification", etc.) combining tree-boosting with Gaussian process and random effects models
* [Parameter tuning](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/parameter_tuning.py) using deterministic or random grid search
* [Generalized linear Gaussian process and mixed effects models](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/generalized_linear_Gaussian_process_mixed_effects_models.py)
* [GPBoost algorithm applied to panel data](https://github.com/fabsig/GPBoost/tree/master/examples/python-guide/panel_data_example.py)
* The **documentation at [https://gpboost.readthedocs.io](https://gpboost.readthedocs.io/en/latest/Python_package.html)**
* Blog posts on how to
* [Combine tree-boosting with grouped random effects models](https://towardsdatascience.com/tree-boosted-mixed-effects-models-4df610b624cb)
* [Combine tree-boosting with Gaussian processes for spatial data](https://towardsdatascience.com/tree-boosting-for-spatial-data-789145d6d97d)
* [GPBoost for generalized linear mixed effects models (GLMMs)](https://towardsdatascience.com/generalized-linear-mixed-effects-models-in-r-and-python-with-gpboost-89297622820c)
* [Demo](https://htmlpreview.github.io/?https://github.com/fabsig/GPBoost/blob/master/examples/GPBoost_demo.html) on how GPBoost can be used in R and Python
## Installation
#### Before you install
* [setuptools](https://pypi.org/project/setuptools) is needed. You can install this using ``pip install setuptools -U``
* 32-bit Python is not supported. Please install the 64-bit version. See [build 32-bit version with 32-bit Python section](#build-32-bit-version-with-32-bit-python).
### Installation from [PyPI](https://pypi.org/project/gpboost) using precompiled binaries
```sh
pip install gpboost -U
```
#### Requirements
* For **Windows** users, [VC runtime](https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads) is needed if **Visual Studio** (2015 or newer) is not installed.
* For **Linux** users, **glibc** >= 2.14 is required.
* If you get an error message ``version `GLIBC_2.27' not found``, you need to [install from source](#installation-from-source).
* In rare cases, when you get the ``OSError: libgomp.so.1: cannot open shared object file: No such file or directory`` error when importing GPBoost, you need to install the OpenMP runtime library separately (use your package manager and search for ``lib[g|i]omp`` for doing this).
* For **macOS** users:
* The library file in distribution wheels is built by the **Apple Clang** compiler. You need to install the **OpenMP** library. You can install the **OpenMP** library by the following command: ``brew install libomp``. <!-- (Xcode version 12.3 is used starting from GPBoost version 0.3.0) -->
* If you have an **arm64 Apple silicon** processor (e.g., M1 or M2) and experience problems, try the following steps:
* [uninstall homebrew](https://stackoverflow.com/questions/72890277/i-cant-uninstall-brew-on-macos-apple-silicon) (in case you have migrated from an older non-arm64 Mac)
* [install homebrew](https://treehouse.github.io/installation-guides/mac/homebrew) (to make sure that you have an arm64 version of libomp)
* install OpenMP (``brew install libomp``)
* remove existing python environments and install Miniforge (``brew install miniforge`` and ``conda init "$(basename "${SHELL}")"``)
### Installation from source
Installation from source can be either done from PyPI or GitHub.
#### Requirements for installation from source
* Installation from source requires that you have installed [**CMake**](https://cmake.org/).
* For **Linux** users, **glibc** >= 2.14 is required.
* In rare cases, you may need to install the OpenMP runtime library separately (use your package manager and search for ``lib[g|i]omp`` for doing this).
* For **macOS** users, you can perform installation either with **Apple Clang** or **gcc**.
* In case you prefer **Apple Clang**, you should install **OpenMP** (details for installation can be found in the [Installation Guide](https://github.com/fabsig/GPBoost/blob/master/docs/Installation_guide.rst#apple-clang)) first and **CMake** version 3.16 or higher is required. Only Apple Clang version 8.1 or higher is supported.
* In case you prefer **gcc**, you need to install it (details for installation can be found in the [Installation Guide](https://github.com/fabsig/GPBoost/blob/master/docs/Installation_guide.rst#gcc)) and specify compilers by running ``export CXX=g++-7 CC=gcc-7`` (replace "7" with the version of **gcc** installed on your machine) first.
* For **Windows** users, **Visual Studio** (or [VS Build Tools](https://visualstudio.microsoft.com/downloads/)) is needed.
#### Installation from source from PyPI
```sh
pip install --no-binary :all: gpboost
```
##### Build with MinGW-w64 on Windows
```sh
pip install gpboost --install-option=--mingw
```
* [CMake](https://cmake.org/) and [MinGW-w64](https://www.mingw-w64.org/) should be installed first.
##### Build 32-bit version with 32-bit Python
```sh
pip install gpboost --install-option=--bit32
```
By default, installation in an environment with 32-bit Python is prohibited. However, you can remove this prohibition on your own risk by passing the ``bit32`` option (not recommended).
#### Installation from source from GitHub
```sh
git clone --recursive https://github.com/fabsig/GPBoost.git
cd GPBoost/python-package
# export CXX=g++-7 CC=gcc-7 # macOS users, if you decided to compile with gcc, don't forget to specify compilers (replace "7" with version of gcc installed on your machine)
python setup.py install
```
Note: ``sudo`` (or administrator rights in **Windows**) may be needed to perform the command.
##### Build with MinGW-w64 on Windows
```sh
python setup.py install --mingw
```
* [CMake](https://cmake.org/) and [MinGW-w64](https://www.mingw-w64.org/) should be installed first.
If you get any errors during installation or due to any other reasons, you may want to build a dynamic library from source by any method you prefer and then just run ``python setup.py install --precompile``.
%prep
%autosetup -n gpboost-1.1.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-gpboost -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1
- Package Spec generated
|