summaryrefslogtreecommitdiff
path: root/python-gpt3-simple-primer.spec
blob: 82ada77b215542d6795850033037890b940ecc82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
%global _empty_manifest_terminate_build 0
Name:		python-gpt3-simple-primer
Version:	0.1.2
Release:	1
Summary:	GPT-3 wrapper for Python
License:	MIT License
URL:		https://github.com/happilyeverafter95/gpt-3
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/93/b7/47e32af4f928a355c2f87697ba5fd030939e1b2f9e795761c9fe93ee0db8/gpt3_simple_primer-0.1.2.tar.gz
BuildArch:	noarch

Requires:	python3-openai

%description
# gpt3-simple-primer

Simple GPT-3 primer using `openai`.

## Background

Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. For more information, visit https://openai.com/blog/openai-api/.

The [OpenAI Python library](https://github.com/openai/openai-python) is the official Python wrapper for the OpenAI API. The purpose of this library is to simplify the priming process by providing easy to use methods for setting the instructions and adding examples.

## Priming

Priming is the practice of providing an initial prompt to the language model to improve subsequent model predictions.

GPT-3 generally does very well even with short instructions and a few examples of your intended use case. Examples are typically delimited based on input and output. For instance, GPT-3 can be used to predict food ingredients based on the following prompt:

```
Given the name of a food, list the ingredients used to make this meal.

Food: apple pie
Ingredients: apple, butter, flour, egg, cinnamon, crust, sugar

Food: guacamole
Ingredients: avocado, tomato, onion, lime, salt
```

## Requirements

You will need an API key from OpenAI to access GPT-3.

## Installation

To install, run:

```
pip install gpt3-simple-primer
```

## Usage

`input_text` and `output_text` determines how input and output are delimited in the examples. The default is to use `Input` and `Output`.

```
from gpt3_simple_primer import GPT3Generator, set_api_key

KEY = 'sk-xxxxx'  # openai key
set_api_key(KEY)

generator = GPT3Generator(input_text='Food',
                          output_text='Ingredients')

generator.set_instructions('List the ingredients for this meal.')
generator.add_example('apple pie', 'apple, butter, flour, egg, cinnamon, crust, sugar')
generator.add_example('guacamole', 'avocado, tomato, onion, lime, salt')

# Ingredients: cream, egg yolk, sugar, lime, key lime juice
generator.generate(prompt='key lime pie',
                   engine='davinci',
                   max_tokens=20,
                   temperature=0.5,
                   top_p=1)
```

To see the prompt used for priming:

```
generator.get_prompt()
```

To remove an example from the prompt:

```
generator.remove_example('apple pie')
```

## Examples

The library includes examples of GPT-3 applications based off of specific prompts.

```
from gpt3_simple_primer import set_api_key
from gpt3_simple_primer.examples import idiom_explainer

KEY = 'sk-xxxxx'  # openai key
set_api_key(KEY)

idiom_explainer.generate('hill to die on', max_tokens=15, engine='davinci')
```




%package -n python3-gpt3-simple-primer
Summary:	GPT-3 wrapper for Python
Provides:	python-gpt3-simple-primer
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-gpt3-simple-primer
# gpt3-simple-primer

Simple GPT-3 primer using `openai`.

## Background

Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. For more information, visit https://openai.com/blog/openai-api/.

The [OpenAI Python library](https://github.com/openai/openai-python) is the official Python wrapper for the OpenAI API. The purpose of this library is to simplify the priming process by providing easy to use methods for setting the instructions and adding examples.

## Priming

Priming is the practice of providing an initial prompt to the language model to improve subsequent model predictions.

GPT-3 generally does very well even with short instructions and a few examples of your intended use case. Examples are typically delimited based on input and output. For instance, GPT-3 can be used to predict food ingredients based on the following prompt:

```
Given the name of a food, list the ingredients used to make this meal.

Food: apple pie
Ingredients: apple, butter, flour, egg, cinnamon, crust, sugar

Food: guacamole
Ingredients: avocado, tomato, onion, lime, salt
```

## Requirements

You will need an API key from OpenAI to access GPT-3.

## Installation

To install, run:

```
pip install gpt3-simple-primer
```

## Usage

`input_text` and `output_text` determines how input and output are delimited in the examples. The default is to use `Input` and `Output`.

```
from gpt3_simple_primer import GPT3Generator, set_api_key

KEY = 'sk-xxxxx'  # openai key
set_api_key(KEY)

generator = GPT3Generator(input_text='Food',
                          output_text='Ingredients')

generator.set_instructions('List the ingredients for this meal.')
generator.add_example('apple pie', 'apple, butter, flour, egg, cinnamon, crust, sugar')
generator.add_example('guacamole', 'avocado, tomato, onion, lime, salt')

# Ingredients: cream, egg yolk, sugar, lime, key lime juice
generator.generate(prompt='key lime pie',
                   engine='davinci',
                   max_tokens=20,
                   temperature=0.5,
                   top_p=1)
```

To see the prompt used for priming:

```
generator.get_prompt()
```

To remove an example from the prompt:

```
generator.remove_example('apple pie')
```

## Examples

The library includes examples of GPT-3 applications based off of specific prompts.

```
from gpt3_simple_primer import set_api_key
from gpt3_simple_primer.examples import idiom_explainer

KEY = 'sk-xxxxx'  # openai key
set_api_key(KEY)

idiom_explainer.generate('hill to die on', max_tokens=15, engine='davinci')
```




%package help
Summary:	Development documents and examples for gpt3-simple-primer
Provides:	python3-gpt3-simple-primer-doc
%description help
# gpt3-simple-primer

Simple GPT-3 primer using `openai`.

## Background

Generative Pre-trained Transformer 3 (GPT-3) is an autoregressive language model that uses deep learning to produce human-like text. For more information, visit https://openai.com/blog/openai-api/.

The [OpenAI Python library](https://github.com/openai/openai-python) is the official Python wrapper for the OpenAI API. The purpose of this library is to simplify the priming process by providing easy to use methods for setting the instructions and adding examples.

## Priming

Priming is the practice of providing an initial prompt to the language model to improve subsequent model predictions.

GPT-3 generally does very well even with short instructions and a few examples of your intended use case. Examples are typically delimited based on input and output. For instance, GPT-3 can be used to predict food ingredients based on the following prompt:

```
Given the name of a food, list the ingredients used to make this meal.

Food: apple pie
Ingredients: apple, butter, flour, egg, cinnamon, crust, sugar

Food: guacamole
Ingredients: avocado, tomato, onion, lime, salt
```

## Requirements

You will need an API key from OpenAI to access GPT-3.

## Installation

To install, run:

```
pip install gpt3-simple-primer
```

## Usage

`input_text` and `output_text` determines how input and output are delimited in the examples. The default is to use `Input` and `Output`.

```
from gpt3_simple_primer import GPT3Generator, set_api_key

KEY = 'sk-xxxxx'  # openai key
set_api_key(KEY)

generator = GPT3Generator(input_text='Food',
                          output_text='Ingredients')

generator.set_instructions('List the ingredients for this meal.')
generator.add_example('apple pie', 'apple, butter, flour, egg, cinnamon, crust, sugar')
generator.add_example('guacamole', 'avocado, tomato, onion, lime, salt')

# Ingredients: cream, egg yolk, sugar, lime, key lime juice
generator.generate(prompt='key lime pie',
                   engine='davinci',
                   max_tokens=20,
                   temperature=0.5,
                   top_p=1)
```

To see the prompt used for priming:

```
generator.get_prompt()
```

To remove an example from the prompt:

```
generator.remove_example('apple pie')
```

## Examples

The library includes examples of GPT-3 applications based off of specific prompts.

```
from gpt3_simple_primer import set_api_key
from gpt3_simple_primer.examples import idiom_explainer

KEY = 'sk-xxxxx'  # openai key
set_api_key(KEY)

idiom_explainer.generate('hill to die on', max_tokens=15, engine='davinci')
```




%prep
%autosetup -n gpt3-simple-primer-0.1.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-gpt3-simple-primer -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.2-1
- Package Spec generated