1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
|
%global _empty_manifest_terminate_build 0
Name: python-grpc4bmi
Version: 0.4.0
Release: 1
Summary: Run your BMI implementation in a separate process and expose it as BMI-python with GRPC
License: Apache License 2.0
URL: https://github.com/eWaterCycle/grpc4bmi
Source0: https://mirrors.aliyun.com/pypi/web/packages/0c/af/208f4f84a7910136e2fe6776f8b7d4370235f47edc11e1cffd1bb6cc8bf9/grpc4bmi-0.4.0.tar.gz
BuildArch: noarch
Requires: python3-grpcio
Requires: python3-grpcio-reflection
Requires: python3-grpcio-status
Requires: python3-googleapis-common-protos
Requires: python3-protobuf
Requires: python3-numpy
Requires: python3-docker
Requires: python3-bmipy
Requires: python3-packaging
Requires: python3-typeguard
Requires: python3-rpy2
Requires: python3-build
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-coverage[toml]
Requires: python3-grpcio-tools
Requires: python3-nbconvert
Requires: python3-ipykernel
Requires: python3-nbformat
Requires: python3-sphinx
Requires: python3-sphinxcontrib-apidoc
Requires: python3-sphinxcontrib-napoleon
Requires: python3-sphinx-argparse
Requires: python3-sphinx-rtd-theme
Requires: python3-numpydoc
Requires: python3-sphinx-copybutton
%description
# grpc4bmi
[](https://doi.org/10.5281/zenodo.1462641)
[](https://github.com/eWaterCycle/grpc4bmi/actions?query=workflow%3ACI)
[](https://grpc4bmi.readthedocs.io/en/latest/?badge=latest)
[](https://sonarcloud.io/dashboard?id=grpc4bmi)
[](https://sonarcloud.io/dashboard?id=grpc4bmi)
## Purpose
This software allows you to wrap your [Basic Model Interface (BMI)](https://github.com/csdms/bmi) implementation in a server process and communicate with it via the included Python client. The communication is serialized to protocol buffers by [GRPC](https://grpc.io/) and occurs over network ports. Can run models in isolated containers using Docker or Apptainer.
## Installation
Optionally, create your virtual environment and activate it, Then, run
```bash
pip install grpc4bmi
```
on the client (Python) side. If your server model is implemented in Python, do the same in the server environment (e.g. docker container). If the model is implemented in R, run instead
```bash
pip install grpc4bmi[R]
```
in the server environment. For bleeding edge version from GitHub use
```bash
pip install git+https://github.com/eWaterCycle/grpc4bmi.git#egg=grpc4bmi
```
Finally if the model is implemented in C or C++, clone this git repo and run
```bash
make
make install
```
in the cpp folder.
## Usage
### Model written in Python
A model should be a subclass of the `Bmi` class from the [bmipy](https://pypi.org/project/bmipy/2.0/) package.
For inspiration look at the [example](test/fake_models.py) in the test directory.
To start a server process that allows calls to your BMI implementation, type
```bash
run-bmi-server --name <PACKAGE>.<MODULE>.<CLASS> --port <PORT> --path <PATH>
```
where ```<PACKAGE>, <MODULE>``` are the python package and module containing your implementation, ```<CLASS>``` is your
bmi model class name, ```<PORT>``` is any available port on the host system, and optionally ```<PATH>``` denotes an
additional path that should be added to the system path to make your implementation work. The name option above is
optional, and if not provided the script will look at the environment variables ```BMI_PACKAGE```, ```BMI_MODULE``` and
```BMI_CLASS```. Similarly, the port can be defined by the environment variable ```BMI_PORT```.
This software assumes that your implementation constructor has no parameters.
### Model written in C/C++ (beta)
Create an executable along the lines of cpp/run-bmi-server.cc. You can copy the file and replace the function
```C++
Bmi* create_model_instance()
{
/* Return your new BMI instance pointer here... */
}
```
with the instantiation of your model BMI. The model needs to implement the csdms BMI for C, but you may also implement our more object-oriented C++ interface [BmiCppExtension](https://github.com/eWaterCycle/grpc4bmi/blob/master/cpp/bmi_cpp_extension.h).
### Model written in R
The grpc4bmi Python package can also run BMI models written in R if the model is a subclass of [AbstractBmi](https://github.com/eWaterCycle/bmi-r/blob/master/R/abstract-bmi.R#L9)
See [https://github.com/eWaterCycle/bmi-r](https://github.com/eWaterCycle/bmi-r) for instruction on R and Docker.
Run the R model a server with
```bash
run-bmi-server --lang R [--path <R file with BMI model>] --name [<PACKAGE>::]<CLASS> --port <PORT>
```
For example with [WALRUS](https://github.com/eWaterCycle/grpc4bmi-examples/tree/master/walrus) use
```bash
run-bmi-server --lang R --path ~/git/eWaterCycle/grpc4bmi-examples/walrus/walrus-bmi.r --name WalrusBmi --port 55555
```
### The client side
The client side has only a Python implementation. The default BMI client assumes a running server process on a given port.
```python
from grpc4bmi.bmi_grpc_client import BmiClient
import grpc
mymodel = BmiClient(grpc.insecure_channel("localhost:<PORT>"))
print mymodel.get_component_name()
mymodel.initialize(<FILEPATH>)
...further BMI calls...
```
The package contains also client implementation that own the server process, either as a Python subprocess or a Docker
container or a Singularity container or a Apptainer container running the ```run-bmi-server``` script. For instance
```python
from grpc4bmi.bmi_client_subproc import BmiClientSubProcess
mymodel = BmiClientSubProcess(<PACKAGE>.<MODULE>.<CLASS>)
```
will automatically launch the server in a sub-process and
```python
from grpc4bmi.bmi_client_docker import BmiClientDocker
mymodel = BmiClientDocker(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a Docker container based on supplied Docker image
and will mount supplied directories to share files between the container and host.
```python
from grpc4bmi.bmi_client_singularity import BmiClientSingularity
mymodel = BmiClientSingularity(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a singularity container on based supplied Singularity image
and will mount supplied directories to share files between the container and host.
```python
from grpc4bmi.bmi_client_apptainer import BmiClientApptainer
mymodel = BmiClientApptainer(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a Apptainer container on based supplied Apptainer image
and will mount supplied directories to share files between the container and host.
For more documentation see [https://grpc4bmi.readthedocs.io/](https://grpc4bmi.readthedocs.io/).
## Development: generating the gRPC code
When developers change the proto-file, it is necessary to install gRPC tools Python packages in your Python environment:
```bash
# Create virtual env
python3 -m venv .venv
. venv/bin/activate
# Make sure latest pip and wheel are install
pip install -U pip wheel
pip install -r dev-requirements.txt
# For R integration also install the R extras with
pip install -e .[R]
# For building docs (cd docs && make html) also install the docs extras with
pip install -e .[docs]
```
and install the C++ runtime and `protoc` command as described in <https://github.com/google/protobuf/blob/master/src/README.md>.
After this, simply executing the `proto_gen.sh` script should do the job.
## Future work
More language bindings are underway.
%package -n python3-grpc4bmi
Summary: Run your BMI implementation in a separate process and expose it as BMI-python with GRPC
Provides: python-grpc4bmi
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-grpc4bmi
# grpc4bmi
[](https://doi.org/10.5281/zenodo.1462641)
[](https://github.com/eWaterCycle/grpc4bmi/actions?query=workflow%3ACI)
[](https://grpc4bmi.readthedocs.io/en/latest/?badge=latest)
[](https://sonarcloud.io/dashboard?id=grpc4bmi)
[](https://sonarcloud.io/dashboard?id=grpc4bmi)
## Purpose
This software allows you to wrap your [Basic Model Interface (BMI)](https://github.com/csdms/bmi) implementation in a server process and communicate with it via the included Python client. The communication is serialized to protocol buffers by [GRPC](https://grpc.io/) and occurs over network ports. Can run models in isolated containers using Docker or Apptainer.
## Installation
Optionally, create your virtual environment and activate it, Then, run
```bash
pip install grpc4bmi
```
on the client (Python) side. If your server model is implemented in Python, do the same in the server environment (e.g. docker container). If the model is implemented in R, run instead
```bash
pip install grpc4bmi[R]
```
in the server environment. For bleeding edge version from GitHub use
```bash
pip install git+https://github.com/eWaterCycle/grpc4bmi.git#egg=grpc4bmi
```
Finally if the model is implemented in C or C++, clone this git repo and run
```bash
make
make install
```
in the cpp folder.
## Usage
### Model written in Python
A model should be a subclass of the `Bmi` class from the [bmipy](https://pypi.org/project/bmipy/2.0/) package.
For inspiration look at the [example](test/fake_models.py) in the test directory.
To start a server process that allows calls to your BMI implementation, type
```bash
run-bmi-server --name <PACKAGE>.<MODULE>.<CLASS> --port <PORT> --path <PATH>
```
where ```<PACKAGE>, <MODULE>``` are the python package and module containing your implementation, ```<CLASS>``` is your
bmi model class name, ```<PORT>``` is any available port on the host system, and optionally ```<PATH>``` denotes an
additional path that should be added to the system path to make your implementation work. The name option above is
optional, and if not provided the script will look at the environment variables ```BMI_PACKAGE```, ```BMI_MODULE``` and
```BMI_CLASS```. Similarly, the port can be defined by the environment variable ```BMI_PORT```.
This software assumes that your implementation constructor has no parameters.
### Model written in C/C++ (beta)
Create an executable along the lines of cpp/run-bmi-server.cc. You can copy the file and replace the function
```C++
Bmi* create_model_instance()
{
/* Return your new BMI instance pointer here... */
}
```
with the instantiation of your model BMI. The model needs to implement the csdms BMI for C, but you may also implement our more object-oriented C++ interface [BmiCppExtension](https://github.com/eWaterCycle/grpc4bmi/blob/master/cpp/bmi_cpp_extension.h).
### Model written in R
The grpc4bmi Python package can also run BMI models written in R if the model is a subclass of [AbstractBmi](https://github.com/eWaterCycle/bmi-r/blob/master/R/abstract-bmi.R#L9)
See [https://github.com/eWaterCycle/bmi-r](https://github.com/eWaterCycle/bmi-r) for instruction on R and Docker.
Run the R model a server with
```bash
run-bmi-server --lang R [--path <R file with BMI model>] --name [<PACKAGE>::]<CLASS> --port <PORT>
```
For example with [WALRUS](https://github.com/eWaterCycle/grpc4bmi-examples/tree/master/walrus) use
```bash
run-bmi-server --lang R --path ~/git/eWaterCycle/grpc4bmi-examples/walrus/walrus-bmi.r --name WalrusBmi --port 55555
```
### The client side
The client side has only a Python implementation. The default BMI client assumes a running server process on a given port.
```python
from grpc4bmi.bmi_grpc_client import BmiClient
import grpc
mymodel = BmiClient(grpc.insecure_channel("localhost:<PORT>"))
print mymodel.get_component_name()
mymodel.initialize(<FILEPATH>)
...further BMI calls...
```
The package contains also client implementation that own the server process, either as a Python subprocess or a Docker
container or a Singularity container or a Apptainer container running the ```run-bmi-server``` script. For instance
```python
from grpc4bmi.bmi_client_subproc import BmiClientSubProcess
mymodel = BmiClientSubProcess(<PACKAGE>.<MODULE>.<CLASS>)
```
will automatically launch the server in a sub-process and
```python
from grpc4bmi.bmi_client_docker import BmiClientDocker
mymodel = BmiClientDocker(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a Docker container based on supplied Docker image
and will mount supplied directories to share files between the container and host.
```python
from grpc4bmi.bmi_client_singularity import BmiClientSingularity
mymodel = BmiClientSingularity(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a singularity container on based supplied Singularity image
and will mount supplied directories to share files between the container and host.
```python
from grpc4bmi.bmi_client_apptainer import BmiClientApptainer
mymodel = BmiClientApptainer(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a Apptainer container on based supplied Apptainer image
and will mount supplied directories to share files between the container and host.
For more documentation see [https://grpc4bmi.readthedocs.io/](https://grpc4bmi.readthedocs.io/).
## Development: generating the gRPC code
When developers change the proto-file, it is necessary to install gRPC tools Python packages in your Python environment:
```bash
# Create virtual env
python3 -m venv .venv
. venv/bin/activate
# Make sure latest pip and wheel are install
pip install -U pip wheel
pip install -r dev-requirements.txt
# For R integration also install the R extras with
pip install -e .[R]
# For building docs (cd docs && make html) also install the docs extras with
pip install -e .[docs]
```
and install the C++ runtime and `protoc` command as described in <https://github.com/google/protobuf/blob/master/src/README.md>.
After this, simply executing the `proto_gen.sh` script should do the job.
## Future work
More language bindings are underway.
%package help
Summary: Development documents and examples for grpc4bmi
Provides: python3-grpc4bmi-doc
%description help
# grpc4bmi
[](https://doi.org/10.5281/zenodo.1462641)
[](https://github.com/eWaterCycle/grpc4bmi/actions?query=workflow%3ACI)
[](https://grpc4bmi.readthedocs.io/en/latest/?badge=latest)
[](https://sonarcloud.io/dashboard?id=grpc4bmi)
[](https://sonarcloud.io/dashboard?id=grpc4bmi)
## Purpose
This software allows you to wrap your [Basic Model Interface (BMI)](https://github.com/csdms/bmi) implementation in a server process and communicate with it via the included Python client. The communication is serialized to protocol buffers by [GRPC](https://grpc.io/) and occurs over network ports. Can run models in isolated containers using Docker or Apptainer.
## Installation
Optionally, create your virtual environment and activate it, Then, run
```bash
pip install grpc4bmi
```
on the client (Python) side. If your server model is implemented in Python, do the same in the server environment (e.g. docker container). If the model is implemented in R, run instead
```bash
pip install grpc4bmi[R]
```
in the server environment. For bleeding edge version from GitHub use
```bash
pip install git+https://github.com/eWaterCycle/grpc4bmi.git#egg=grpc4bmi
```
Finally if the model is implemented in C or C++, clone this git repo and run
```bash
make
make install
```
in the cpp folder.
## Usage
### Model written in Python
A model should be a subclass of the `Bmi` class from the [bmipy](https://pypi.org/project/bmipy/2.0/) package.
For inspiration look at the [example](test/fake_models.py) in the test directory.
To start a server process that allows calls to your BMI implementation, type
```bash
run-bmi-server --name <PACKAGE>.<MODULE>.<CLASS> --port <PORT> --path <PATH>
```
where ```<PACKAGE>, <MODULE>``` are the python package and module containing your implementation, ```<CLASS>``` is your
bmi model class name, ```<PORT>``` is any available port on the host system, and optionally ```<PATH>``` denotes an
additional path that should be added to the system path to make your implementation work. The name option above is
optional, and if not provided the script will look at the environment variables ```BMI_PACKAGE```, ```BMI_MODULE``` and
```BMI_CLASS```. Similarly, the port can be defined by the environment variable ```BMI_PORT```.
This software assumes that your implementation constructor has no parameters.
### Model written in C/C++ (beta)
Create an executable along the lines of cpp/run-bmi-server.cc. You can copy the file and replace the function
```C++
Bmi* create_model_instance()
{
/* Return your new BMI instance pointer here... */
}
```
with the instantiation of your model BMI. The model needs to implement the csdms BMI for C, but you may also implement our more object-oriented C++ interface [BmiCppExtension](https://github.com/eWaterCycle/grpc4bmi/blob/master/cpp/bmi_cpp_extension.h).
### Model written in R
The grpc4bmi Python package can also run BMI models written in R if the model is a subclass of [AbstractBmi](https://github.com/eWaterCycle/bmi-r/blob/master/R/abstract-bmi.R#L9)
See [https://github.com/eWaterCycle/bmi-r](https://github.com/eWaterCycle/bmi-r) for instruction on R and Docker.
Run the R model a server with
```bash
run-bmi-server --lang R [--path <R file with BMI model>] --name [<PACKAGE>::]<CLASS> --port <PORT>
```
For example with [WALRUS](https://github.com/eWaterCycle/grpc4bmi-examples/tree/master/walrus) use
```bash
run-bmi-server --lang R --path ~/git/eWaterCycle/grpc4bmi-examples/walrus/walrus-bmi.r --name WalrusBmi --port 55555
```
### The client side
The client side has only a Python implementation. The default BMI client assumes a running server process on a given port.
```python
from grpc4bmi.bmi_grpc_client import BmiClient
import grpc
mymodel = BmiClient(grpc.insecure_channel("localhost:<PORT>"))
print mymodel.get_component_name()
mymodel.initialize(<FILEPATH>)
...further BMI calls...
```
The package contains also client implementation that own the server process, either as a Python subprocess or a Docker
container or a Singularity container or a Apptainer container running the ```run-bmi-server``` script. For instance
```python
from grpc4bmi.bmi_client_subproc import BmiClientSubProcess
mymodel = BmiClientSubProcess(<PACKAGE>.<MODULE>.<CLASS>)
```
will automatically launch the server in a sub-process and
```python
from grpc4bmi.bmi_client_docker import BmiClientDocker
mymodel = BmiClientDocker(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a Docker container based on supplied Docker image
and will mount supplied directories to share files between the container and host.
```python
from grpc4bmi.bmi_client_singularity import BmiClientSingularity
mymodel = BmiClientSingularity(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a singularity container on based supplied Singularity image
and will mount supplied directories to share files between the container and host.
```python
from grpc4bmi.bmi_client_apptainer import BmiClientApptainer
mymodel = BmiClientApptainer(<IMAGE>, <WORK DIR TO MOUNT>, input_dirs=[<INPUT DIRECTORIES TO MOUNT>])
```
will launch a Apptainer container on based supplied Apptainer image
and will mount supplied directories to share files between the container and host.
For more documentation see [https://grpc4bmi.readthedocs.io/](https://grpc4bmi.readthedocs.io/).
## Development: generating the gRPC code
When developers change the proto-file, it is necessary to install gRPC tools Python packages in your Python environment:
```bash
# Create virtual env
python3 -m venv .venv
. venv/bin/activate
# Make sure latest pip and wheel are install
pip install -U pip wheel
pip install -r dev-requirements.txt
# For R integration also install the R extras with
pip install -e .[R]
# For building docs (cd docs && make html) also install the docs extras with
pip install -e .[docs]
```
and install the C++ runtime and `protoc` command as described in <https://github.com/google/protobuf/blob/master/src/README.md>.
After this, simply executing the `proto_gen.sh` script should do the job.
## Future work
More language bindings are underway.
%prep
%autosetup -n grpc4bmi-0.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-grpc4bmi -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.0-1
- Package Spec generated
|