1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
%global _empty_manifest_terminate_build 0
Name: python-hideandseek
Version: 0.1.5
Release: 1
Summary: library for deep learning and privacy preserving deep learning
License: MIT License
URL: https://github.com/jsyoo61/hideandseek
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/0a/554f1ae7e4f35482523a3494164c40048beb6476ec72fa7550a51df3f4a0/hideandseek-0.1.5.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-hydra-core
Requires: python3-tools-jsyoo61
%description
# hideandseek
Highly modularized deep learning training library.
Why use `hideandseek`?
- Easy training & saving deep learning models along with other modules (ex: preprocessing modules) required in inference
- Run multiple deep learning experiments in parallel on multiples GPUs (powered by [hydra](https://hydra.cc/docs/intro/), and python multiprocessing)
- Design and analyze experiments scientifically by modifying variables (powered by [hydra](https://hydra.cc/docs/intro/))
- Modularized machine learning pipeline allows using the same script for all types of experiments
- The same training code can be run in privacy preserving setting by minimal modifications
Currently prettifying codes. (30.10.2022.)
import torch
import torch.nn as nn
# Generate data
x = torch.rand(200,1)
y = 5*x+2
model = nn.Linear(1,1)
dataset = torch.utils.data.TensorDataset(x, y)
criterion = nn.MSELoss()
cfg = {
'lr': 1e-2,
'batch_size': 32,
'epoch': 10 # optional
}
# Training configuration. All you need to train a neural network
kwargs = {
'model':model,
'dataset':dataset,
'cfg_train':cfg,
'criterion':criterion,
'name': 'Test' # optional
}
trainer = hs.N.Node(**kwargs)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
trainer.model.to(device)
# Train for predefined number of epochs
trainer.train() # Train for predefined number of epochs
trainer.train(5) # Train for specified number of epochs
trainer.train(epoch=5) # Same thing with trainer.train(5)
trainer.train(step=500) # Train for specified number of updates
node.model.cpu()
and simply run multiple batch of experiments with a single line command such as:
python train.py -m lr=1e-3,1e-2 batch_size=32,64 "random_seed=range(0,5)" \
hydra/launcher=joblib hydra.launcher.n_jobs=8
# Runs total of 2*2*5=40 batch of experiments, with 8 processes at a time. Experiment results are stored in hydra.sweep.dir which can be overridden.
To do
- [ ] Draw figures to explain hideandseek
- [ ] GUI for generating experiment scripts when conducting variable sweeps
%package -n python3-hideandseek
Summary: library for deep learning and privacy preserving deep learning
Provides: python-hideandseek
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-hideandseek
# hideandseek
Highly modularized deep learning training library.
Why use `hideandseek`?
- Easy training & saving deep learning models along with other modules (ex: preprocessing modules) required in inference
- Run multiple deep learning experiments in parallel on multiples GPUs (powered by [hydra](https://hydra.cc/docs/intro/), and python multiprocessing)
- Design and analyze experiments scientifically by modifying variables (powered by [hydra](https://hydra.cc/docs/intro/))
- Modularized machine learning pipeline allows using the same script for all types of experiments
- The same training code can be run in privacy preserving setting by minimal modifications
Currently prettifying codes. (30.10.2022.)
import torch
import torch.nn as nn
# Generate data
x = torch.rand(200,1)
y = 5*x+2
model = nn.Linear(1,1)
dataset = torch.utils.data.TensorDataset(x, y)
criterion = nn.MSELoss()
cfg = {
'lr': 1e-2,
'batch_size': 32,
'epoch': 10 # optional
}
# Training configuration. All you need to train a neural network
kwargs = {
'model':model,
'dataset':dataset,
'cfg_train':cfg,
'criterion':criterion,
'name': 'Test' # optional
}
trainer = hs.N.Node(**kwargs)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
trainer.model.to(device)
# Train for predefined number of epochs
trainer.train() # Train for predefined number of epochs
trainer.train(5) # Train for specified number of epochs
trainer.train(epoch=5) # Same thing with trainer.train(5)
trainer.train(step=500) # Train for specified number of updates
node.model.cpu()
and simply run multiple batch of experiments with a single line command such as:
python train.py -m lr=1e-3,1e-2 batch_size=32,64 "random_seed=range(0,5)" \
hydra/launcher=joblib hydra.launcher.n_jobs=8
# Runs total of 2*2*5=40 batch of experiments, with 8 processes at a time. Experiment results are stored in hydra.sweep.dir which can be overridden.
To do
- [ ] Draw figures to explain hideandseek
- [ ] GUI for generating experiment scripts when conducting variable sweeps
%package help
Summary: Development documents and examples for hideandseek
Provides: python3-hideandseek-doc
%description help
# hideandseek
Highly modularized deep learning training library.
Why use `hideandseek`?
- Easy training & saving deep learning models along with other modules (ex: preprocessing modules) required in inference
- Run multiple deep learning experiments in parallel on multiples GPUs (powered by [hydra](https://hydra.cc/docs/intro/), and python multiprocessing)
- Design and analyze experiments scientifically by modifying variables (powered by [hydra](https://hydra.cc/docs/intro/))
- Modularized machine learning pipeline allows using the same script for all types of experiments
- The same training code can be run in privacy preserving setting by minimal modifications
Currently prettifying codes. (30.10.2022.)
import torch
import torch.nn as nn
# Generate data
x = torch.rand(200,1)
y = 5*x+2
model = nn.Linear(1,1)
dataset = torch.utils.data.TensorDataset(x, y)
criterion = nn.MSELoss()
cfg = {
'lr': 1e-2,
'batch_size': 32,
'epoch': 10 # optional
}
# Training configuration. All you need to train a neural network
kwargs = {
'model':model,
'dataset':dataset,
'cfg_train':cfg,
'criterion':criterion,
'name': 'Test' # optional
}
trainer = hs.N.Node(**kwargs)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
trainer.model.to(device)
# Train for predefined number of epochs
trainer.train() # Train for predefined number of epochs
trainer.train(5) # Train for specified number of epochs
trainer.train(epoch=5) # Same thing with trainer.train(5)
trainer.train(step=500) # Train for specified number of updates
node.model.cpu()
and simply run multiple batch of experiments with a single line command such as:
python train.py -m lr=1e-3,1e-2 batch_size=32,64 "random_seed=range(0,5)" \
hydra/launcher=joblib hydra.launcher.n_jobs=8
# Runs total of 2*2*5=40 batch of experiments, with 8 processes at a time. Experiment results are stored in hydra.sweep.dir which can be overridden.
To do
- [ ] Draw figures to explain hideandseek
- [ ] GUI for generating experiment scripts when conducting variable sweeps
%prep
%autosetup -n hideandseek-0.1.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-hideandseek -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.5-1
- Package Spec generated
|