summaryrefslogtreecommitdiff
path: root/python-highdicom.spec
blob: e062ea32172c9a2e585b04c967cdb5cee60a7ef1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
%global _empty_manifest_terminate_build 0
Name:		python-highdicom
Version:	0.21.1
Release:	1
Summary:	High-level DICOM abstractions.
License:	MIT
URL:		https://github.com/imagingdatacommons/highdicom
Source0:	https://mirrors.aliyun.com/pypi/web/packages/5f/fa/8de65491f282678c588a3059e3631c290fc53f55ff4ea2be5c0075392b57/highdicom-0.21.1.tar.gz
BuildArch:	noarch

Requires:	python3-pydicom
Requires:	python3-numpy
Requires:	python3-pillow
Requires:	python3-pillow-jpls
Requires:	python3-pylibjpeg
Requires:	python3-pylibjpeg-libjpeg
Requires:	python3-pylibjpeg-openjpeg

%description
[![Build Status](https://github.com/imagingdatacommons/highdicom/actions/workflows/run_unit_tests.yml/badge.svg)](https://github.com/imagingdatacommons/highdicom/actions)
[![PyPi Distribution](https://img.shields.io/pypi/v/highdicom.svg)](https://pypi.python.org/pypi/highdicom/)
[![Python Versions](https://img.shields.io/pypi/pyversions/highdicom.svg)](https://pypi.org/project/highdicom/)
[![Downloads](https://pepy.tech/badge/highdicom)](https://pepy.tech/project/highdicom)

# High DICOM

A library that provides high-level DICOM abstractions for the Python programming language to facilitate the creation and handling of DICOM objects for image-derived information, including image annotations, and image analysis results.
It currently provides tools for creating and decoding the following DICOM information object definitions (IODs):
* Annotations
* Parametric Map images
* Segmentation images
* Structured Report documents
* Secondary Capture images
* Key Object Selection documents
* Legacy Converted Enhanced CT/PET/MR images (e.g., for single frame to multi-frame conversion)
* Softcopy Presentation State instances (including Grayscale, Color, and Pseudo-Color)

## Documentation

Please refer to the online documentation at [highdicom.readthedocs.io](https://highdicom.readthedocs.io), which includes installation instructions, a user guide with examples, a developer guide, and complete documentation of the application programming interface of the `highdicom` package.

## Citation

For more information about the motivation of the library and the design of highdicom's API, please see the following article:

> [Highdicom: A Python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology](https://arxiv.org/abs/2106.07806)
> C.P. Bridge, C. Gorman, S. Pieper, S.W. Doyle, J.K. Lennerz, J. Kalpathy-Cramer, D.A. Clunie, A.Y. Fedorov, and M.D. Herrmann

If you use highdicom in your research, please cite the above article.

## Support

The developers gratefully acknowledge their support:
* The [Alliance for Digital Pathology](https://digitalpathologyalliance.org/)
* The [MGH & BWH Center for Clinical Data Science](https://www.ccds.io/)
* [Quantitative Image Informatics for Cancer Research (QIICR)](http://qiicr.org)
* [Radiomics](http://radiomics.io)
* The [NCI Imaging Data Commons](https://imaging.datacommons.cancer.gov/)


%package -n python3-highdicom
Summary:	High-level DICOM abstractions.
Provides:	python-highdicom
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-highdicom
[![Build Status](https://github.com/imagingdatacommons/highdicom/actions/workflows/run_unit_tests.yml/badge.svg)](https://github.com/imagingdatacommons/highdicom/actions)
[![PyPi Distribution](https://img.shields.io/pypi/v/highdicom.svg)](https://pypi.python.org/pypi/highdicom/)
[![Python Versions](https://img.shields.io/pypi/pyversions/highdicom.svg)](https://pypi.org/project/highdicom/)
[![Downloads](https://pepy.tech/badge/highdicom)](https://pepy.tech/project/highdicom)

# High DICOM

A library that provides high-level DICOM abstractions for the Python programming language to facilitate the creation and handling of DICOM objects for image-derived information, including image annotations, and image analysis results.
It currently provides tools for creating and decoding the following DICOM information object definitions (IODs):
* Annotations
* Parametric Map images
* Segmentation images
* Structured Report documents
* Secondary Capture images
* Key Object Selection documents
* Legacy Converted Enhanced CT/PET/MR images (e.g., for single frame to multi-frame conversion)
* Softcopy Presentation State instances (including Grayscale, Color, and Pseudo-Color)

## Documentation

Please refer to the online documentation at [highdicom.readthedocs.io](https://highdicom.readthedocs.io), which includes installation instructions, a user guide with examples, a developer guide, and complete documentation of the application programming interface of the `highdicom` package.

## Citation

For more information about the motivation of the library and the design of highdicom's API, please see the following article:

> [Highdicom: A Python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology](https://arxiv.org/abs/2106.07806)
> C.P. Bridge, C. Gorman, S. Pieper, S.W. Doyle, J.K. Lennerz, J. Kalpathy-Cramer, D.A. Clunie, A.Y. Fedorov, and M.D. Herrmann

If you use highdicom in your research, please cite the above article.

## Support

The developers gratefully acknowledge their support:
* The [Alliance for Digital Pathology](https://digitalpathologyalliance.org/)
* The [MGH & BWH Center for Clinical Data Science](https://www.ccds.io/)
* [Quantitative Image Informatics for Cancer Research (QIICR)](http://qiicr.org)
* [Radiomics](http://radiomics.io)
* The [NCI Imaging Data Commons](https://imaging.datacommons.cancer.gov/)


%package help
Summary:	Development documents and examples for highdicom
Provides:	python3-highdicom-doc
%description help
[![Build Status](https://github.com/imagingdatacommons/highdicom/actions/workflows/run_unit_tests.yml/badge.svg)](https://github.com/imagingdatacommons/highdicom/actions)
[![PyPi Distribution](https://img.shields.io/pypi/v/highdicom.svg)](https://pypi.python.org/pypi/highdicom/)
[![Python Versions](https://img.shields.io/pypi/pyversions/highdicom.svg)](https://pypi.org/project/highdicom/)
[![Downloads](https://pepy.tech/badge/highdicom)](https://pepy.tech/project/highdicom)

# High DICOM

A library that provides high-level DICOM abstractions for the Python programming language to facilitate the creation and handling of DICOM objects for image-derived information, including image annotations, and image analysis results.
It currently provides tools for creating and decoding the following DICOM information object definitions (IODs):
* Annotations
* Parametric Map images
* Segmentation images
* Structured Report documents
* Secondary Capture images
* Key Object Selection documents
* Legacy Converted Enhanced CT/PET/MR images (e.g., for single frame to multi-frame conversion)
* Softcopy Presentation State instances (including Grayscale, Color, and Pseudo-Color)

## Documentation

Please refer to the online documentation at [highdicom.readthedocs.io](https://highdicom.readthedocs.io), which includes installation instructions, a user guide with examples, a developer guide, and complete documentation of the application programming interface of the `highdicom` package.

## Citation

For more information about the motivation of the library and the design of highdicom's API, please see the following article:

> [Highdicom: A Python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology](https://arxiv.org/abs/2106.07806)
> C.P. Bridge, C. Gorman, S. Pieper, S.W. Doyle, J.K. Lennerz, J. Kalpathy-Cramer, D.A. Clunie, A.Y. Fedorov, and M.D. Herrmann

If you use highdicom in your research, please cite the above article.

## Support

The developers gratefully acknowledge their support:
* The [Alliance for Digital Pathology](https://digitalpathologyalliance.org/)
* The [MGH & BWH Center for Clinical Data Science](https://www.ccds.io/)
* [Quantitative Image Informatics for Cancer Research (QIICR)](http://qiicr.org)
* [Radiomics](http://radiomics.io)
* The [NCI Imaging Data Commons](https://imaging.datacommons.cancer.gov/)


%prep
%autosetup -n highdicom-0.21.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-highdicom -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.21.1-1
- Package Spec generated