summaryrefslogtreecommitdiff
path: root/python-hydra-core.spec
blob: 6f594f38d704d13ba499ccb1614af704fe835c1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
%global _empty_manifest_terminate_build 0
Name:		python-hydra-core
Version:	1.3.2
Release:	1
Summary:	A framework for elegantly configuring complex applications
License:	MIT
URL:		https://github.com/facebookresearch/hydra
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/6d/8e/07e42bc434a847154083b315779b0a81d567154504624e181caf2c71cd98/hydra-core-1.3.2.tar.gz
BuildArch:	noarch

Requires:	python3-omegaconf
Requires:	python3-antlr4-python3-runtime
Requires:	python3-packaging
Requires:	python3-importlib-resources

%description
### Releases
#### Stable
**Hydra 1.3** is the stable version of Hydra.
- [Documentation](https://hydra.cc/docs/1.3/intro/)
- Installation : `pip install hydra-core --upgrade`
See the [NEWS.md](NEWS.md) file for a summary of recent changes to Hydra.
### License
Hydra is licensed under [MIT License](LICENSE).
## Hydra Ecosystem
#### Check out these third-party libraries that build on Hydra's functionality:
* [hydra-zen](https://github.com/mit-ll-responsible-ai/hydra-zen): Pythonic utilities for working with Hydra. Dynamic config generation capabilities, enhanced config store features, a Python API for launching Hydra jobs, and more.
* [lightning-hydra-template](https://github.com/ashleve/lightning-hydra-template): user-friendly template combining Hydra with [Pytorch-Lightning](https://github.com/Lightning-AI/lightning) for ML experimentation.
* [hydra-torch](https://github.com/pytorch/hydra-torch): [configen](https://github.com/facebookresearch/hydra/tree/main/tools/configen)-generated configuration classes enabling type-safe PyTorch configuration for Hydra apps.
* NVIDIA's DeepLearningExamples repository contains a Hydra Launcher plugin, the [distributed_launcher](https://github.com/NVIDIA/DeepLearningExamples/tree/9c34e35c218514b8607d7cf381d8a982a01175e9/Tools/PyTorch/TimeSeriesPredictionPlatform/distributed_launcher), which makes use of the pytorch [distributed.launch](https://pytorch.org/docs/stable/distributed.html#launch-utility) API.
#### Ask questions in Github Discussions or StackOverflow (Use the tag #fb-hydra or #omegaconf):
* [Github Discussions](https://github.com/facebookresearch/hydra/discussions)
* [StackOverflow](https://stackexchange.com/filters/391828/hydra-questions)
* [Twitter](https://twitter.com/Hydra_Framework)
Check out the Meta AI [blog post](https://ai.facebook.com/blog/reengineering-facebook-ais-deep-learning-platforms-for-interoperability/) to learn about how Hydra fits into Meta's efforts to reengineer deep learning platforms for interoperability.
### Citing Hydra
If you use Hydra in your research please use the following BibTeX entry:
```BibTeX
@Misc{Yadan2019Hydra,
  author =       {Omry Yadan},
  title =        {Hydra - A framework for elegantly configuring complex applications},
  howpublished = {Github},
  year =         {2019},
  url =          {https://github.com/facebookresearch/hydra}
}
```

%package -n python3-hydra-core
Summary:	A framework for elegantly configuring complex applications
Provides:	python-hydra-core
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-hydra-core
### Releases
#### Stable
**Hydra 1.3** is the stable version of Hydra.
- [Documentation](https://hydra.cc/docs/1.3/intro/)
- Installation : `pip install hydra-core --upgrade`
See the [NEWS.md](NEWS.md) file for a summary of recent changes to Hydra.
### License
Hydra is licensed under [MIT License](LICENSE).
## Hydra Ecosystem
#### Check out these third-party libraries that build on Hydra's functionality:
* [hydra-zen](https://github.com/mit-ll-responsible-ai/hydra-zen): Pythonic utilities for working with Hydra. Dynamic config generation capabilities, enhanced config store features, a Python API for launching Hydra jobs, and more.
* [lightning-hydra-template](https://github.com/ashleve/lightning-hydra-template): user-friendly template combining Hydra with [Pytorch-Lightning](https://github.com/Lightning-AI/lightning) for ML experimentation.
* [hydra-torch](https://github.com/pytorch/hydra-torch): [configen](https://github.com/facebookresearch/hydra/tree/main/tools/configen)-generated configuration classes enabling type-safe PyTorch configuration for Hydra apps.
* NVIDIA's DeepLearningExamples repository contains a Hydra Launcher plugin, the [distributed_launcher](https://github.com/NVIDIA/DeepLearningExamples/tree/9c34e35c218514b8607d7cf381d8a982a01175e9/Tools/PyTorch/TimeSeriesPredictionPlatform/distributed_launcher), which makes use of the pytorch [distributed.launch](https://pytorch.org/docs/stable/distributed.html#launch-utility) API.
#### Ask questions in Github Discussions or StackOverflow (Use the tag #fb-hydra or #omegaconf):
* [Github Discussions](https://github.com/facebookresearch/hydra/discussions)
* [StackOverflow](https://stackexchange.com/filters/391828/hydra-questions)
* [Twitter](https://twitter.com/Hydra_Framework)
Check out the Meta AI [blog post](https://ai.facebook.com/blog/reengineering-facebook-ais-deep-learning-platforms-for-interoperability/) to learn about how Hydra fits into Meta's efforts to reengineer deep learning platforms for interoperability.
### Citing Hydra
If you use Hydra in your research please use the following BibTeX entry:
```BibTeX
@Misc{Yadan2019Hydra,
  author =       {Omry Yadan},
  title =        {Hydra - A framework for elegantly configuring complex applications},
  howpublished = {Github},
  year =         {2019},
  url =          {https://github.com/facebookresearch/hydra}
}
```

%package help
Summary:	Development documents and examples for hydra-core
Provides:	python3-hydra-core-doc
%description help
### Releases
#### Stable
**Hydra 1.3** is the stable version of Hydra.
- [Documentation](https://hydra.cc/docs/1.3/intro/)
- Installation : `pip install hydra-core --upgrade`
See the [NEWS.md](NEWS.md) file for a summary of recent changes to Hydra.
### License
Hydra is licensed under [MIT License](LICENSE).
## Hydra Ecosystem
#### Check out these third-party libraries that build on Hydra's functionality:
* [hydra-zen](https://github.com/mit-ll-responsible-ai/hydra-zen): Pythonic utilities for working with Hydra. Dynamic config generation capabilities, enhanced config store features, a Python API for launching Hydra jobs, and more.
* [lightning-hydra-template](https://github.com/ashleve/lightning-hydra-template): user-friendly template combining Hydra with [Pytorch-Lightning](https://github.com/Lightning-AI/lightning) for ML experimentation.
* [hydra-torch](https://github.com/pytorch/hydra-torch): [configen](https://github.com/facebookresearch/hydra/tree/main/tools/configen)-generated configuration classes enabling type-safe PyTorch configuration for Hydra apps.
* NVIDIA's DeepLearningExamples repository contains a Hydra Launcher plugin, the [distributed_launcher](https://github.com/NVIDIA/DeepLearningExamples/tree/9c34e35c218514b8607d7cf381d8a982a01175e9/Tools/PyTorch/TimeSeriesPredictionPlatform/distributed_launcher), which makes use of the pytorch [distributed.launch](https://pytorch.org/docs/stable/distributed.html#launch-utility) API.
#### Ask questions in Github Discussions or StackOverflow (Use the tag #fb-hydra or #omegaconf):
* [Github Discussions](https://github.com/facebookresearch/hydra/discussions)
* [StackOverflow](https://stackexchange.com/filters/391828/hydra-questions)
* [Twitter](https://twitter.com/Hydra_Framework)
Check out the Meta AI [blog post](https://ai.facebook.com/blog/reengineering-facebook-ais-deep-learning-platforms-for-interoperability/) to learn about how Hydra fits into Meta's efforts to reengineer deep learning platforms for interoperability.
### Citing Hydra
If you use Hydra in your research please use the following BibTeX entry:
```BibTeX
@Misc{Yadan2019Hydra,
  author =       {Omry Yadan},
  title =        {Hydra - A framework for elegantly configuring complex applications},
  howpublished = {Github},
  year =         {2019},
  url =          {https://github.com/facebookresearch/hydra}
}
```

%prep
%autosetup -n hydra-core-1.3.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-hydra-core -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.3.2-1
- Package Spec generated