summaryrefslogtreecommitdiff
path: root/python-ia-genie-sdk.spec
blob: 6ac76a3ba92303e699d2ec4d7330dcda5e30806a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
%global _empty_manifest_terminate_build 0
Name:		python-ia-genie-sdk
Version:	0.1.30
Release:	1
Summary:	SDK for Intelligent Artifact's Genie, a general evolving networked intelligence engine using GAIuS framework.
License:	MIT License
URL:		https://bitbucket.org/intelligent-artifacts/geniesdk-python/src/master/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/0b/e8/941be437f31c26ff9fbc78f60d1a428a47d799e4824ab36d1fd88fa4fa0e/ia-genie-sdk-0.1.30.tar.gz
BuildArch:	noarch

Requires:	python3-requests
Requires:	python3-pymongo

%description
# Genie™ Python SDK
A Python SDK for Intelligent Artifacts' Genie™.

## What is Genie™?
Genie™ is a General Evolving Networked Intelligence Engine.  It is an Artificial General Intelligence platform for rapidly building machine intelligence solutions for any problem domain.

Genie™ requires an account on [Intelligent Artifacts] (https://www.intelligent-artifacts.com).

## What is Genie™ Python SDK?
This package, Genie™ Python SDK, is a software development kit for interacting with "GENIE agents" and "bottles" from Python.  It provides useful tools and services.

## Install
`pip install ia-genie-sdk`

Provides:

    - GenomeInfo
    - BottleClient
    - BackTesting

#### To use GenomeInfo:

You will need to download your genie's genome file from your Intelligent Artifacts account.

~~~
from ialib.GenomeInfo import Genome
import json

genome_topology = json.loads(genome_json_string)
genome = Genome(genome_topology)
~~~

If you want to have the topology displayed, you need to install cyjupter:

`pip3 install cyjupyter`


##### The useful functions are:
~~~
genome.agent - returns the name of the agent.
    ex: 'focusgenie'

genome.get_nodes() - returns 2-tuple of primitives and manipulatives genomic data.

genome.get_actions() - returns dictionary of primitives with lists of action IDs.
    ex: {'P1': ['ma23b1323',
                'm390d053c']}

genome.get_action_manipulatives() - returns a list of action manipulative IDs.
    ex: ['m390d053c',
         'ma23b1323']

genome.get_primitive_map() - returns a dictionary of primitive names to primitive IDs.
    ex: {'P1': 'p464b64bc'}

genome.get_manipulative_map() - returns a dictionary of manipulative IDs to manipulative names.
    ex: {'m390d053c': 'ACTIONPath',
         'ma23b1323': 'ACTIONPath',
         'mcd6d4d68': 'negateContext',
         'm40aaf174': 'vectorFilter',
         'med2ed537': 'vectorPassthrough',
         'm89aa2c7e': 'reduceVectorsBySubtraction'}

genome.display() - graphically displays the topology.
~~~



#### To use BottleClient:

You will need to have an active bottle running on Intelligent Artifacts.  The bottle's information such as 'name' and secrete 'api_key' can be found in your IA account.

If on IA cloud:

~~~
from ialib.bottle_client import BottleClient

bottle_info = {'api_key': 'ABCD-1234',
               'name': 'genie-bottle',
               'domain': 'intelligent-artifacts.com',
               'secure': True}

test_bottle = BottleClient(bottle_info)
test_bottle
~~~


If local:
(Note: local, on-premises, on-board, at-the-edge, etc. usage requires licensing from Intelligent Artifacts. Send email to team@intelligent-artifacts.com for licensing support.)
~~~
from ialib.bottle_client import BottleClient

bottle_info = {'api_key': 'ABCD-1234',
               'name': 'genie-bottle',
               'domain': ':8181',
               'secure': False}

test_bottle = BottleClient(bottle_info)
test_bottle
~~~

Prior to utilizing the bottle, you must establish a connection between the client and bottle through the use of the connect method:

~~~
test_bottle.connect()
~~~

Note, this will download a copy of the genie's genome. Alternatively, you can manually inject your genie's genome into the bottle and connect in this manner:

~~~
test_bottle.inject_genome(genome)
~~~

Wait for return status.

Once you have a running genie, set ingress and query nodes by passing the node names in a list:

~~~
test_bottle.set_ingress_nodes(['P1'])
test_bottle.set_query_nodes(['P1'])
~~~

Send data to bottle:

~~~
data = {"strings": ["Hello"], "vectors": [], "determinants": []}
test_bottle.observe(data)
~~~

Query the bottle nodes:

~~~
print(test_bottle.show_status())
predictions = test_bottle.get_predictions()
~~~

You can also pass GenieMetalanguage data to the genie:

~~~
from ialib.genie_metalanguage import CLEAR_ALL_MEMORY, CLEAR_WM, LEARN, SET_PREDICTIONS_ON, SET_PREDICTIONS_OFF
test_bottle.observe(LEARN)
~~~

When sending classifications to a genie, it is best practice to send the classification as a singular symbol in the last event of a sequence.  This allows for querying the last event in the prediction's 'future' field for the answer.  The classification, though, should be sent to all the query nodes along with the ingress nodes.  The `observe_classification` function of the `BottleClient` class does that for us:

~~~
data = {"strings": ["World!"], "vectors": [], "determinants": []}
test_bottle.observe_classification(data)
~~~

#### To use Backtesting:

There are 3 built-in backtesting reports:

    - classification:
        - Train and predict a string value to be a classification of observed data.
    - utility - polarity:
        - Polarity is basically a +/- binary classification test using the prediction's 'utility' value.  It scores correct if the polarity of the prediction matches the polarity of the expected.
    - utility - value:
        - Value tests for the actual predicted value against the expected and scores correct if within a provided `tolerance_threshold`.

For each, the observed data can be a sequence of one or more events, containing any vectors or strings.




%package -n python3-ia-genie-sdk
Summary:	SDK for Intelligent Artifact's Genie, a general evolving networked intelligence engine using GAIuS framework.
Provides:	python-ia-genie-sdk
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-ia-genie-sdk
# Genie™ Python SDK
A Python SDK for Intelligent Artifacts' Genie™.

## What is Genie™?
Genie™ is a General Evolving Networked Intelligence Engine.  It is an Artificial General Intelligence platform for rapidly building machine intelligence solutions for any problem domain.

Genie™ requires an account on [Intelligent Artifacts] (https://www.intelligent-artifacts.com).

## What is Genie™ Python SDK?
This package, Genie™ Python SDK, is a software development kit for interacting with "GENIE agents" and "bottles" from Python.  It provides useful tools and services.

## Install
`pip install ia-genie-sdk`

Provides:

    - GenomeInfo
    - BottleClient
    - BackTesting

#### To use GenomeInfo:

You will need to download your genie's genome file from your Intelligent Artifacts account.

~~~
from ialib.GenomeInfo import Genome
import json

genome_topology = json.loads(genome_json_string)
genome = Genome(genome_topology)
~~~

If you want to have the topology displayed, you need to install cyjupter:

`pip3 install cyjupyter`


##### The useful functions are:
~~~
genome.agent - returns the name of the agent.
    ex: 'focusgenie'

genome.get_nodes() - returns 2-tuple of primitives and manipulatives genomic data.

genome.get_actions() - returns dictionary of primitives with lists of action IDs.
    ex: {'P1': ['ma23b1323',
                'm390d053c']}

genome.get_action_manipulatives() - returns a list of action manipulative IDs.
    ex: ['m390d053c',
         'ma23b1323']

genome.get_primitive_map() - returns a dictionary of primitive names to primitive IDs.
    ex: {'P1': 'p464b64bc'}

genome.get_manipulative_map() - returns a dictionary of manipulative IDs to manipulative names.
    ex: {'m390d053c': 'ACTIONPath',
         'ma23b1323': 'ACTIONPath',
         'mcd6d4d68': 'negateContext',
         'm40aaf174': 'vectorFilter',
         'med2ed537': 'vectorPassthrough',
         'm89aa2c7e': 'reduceVectorsBySubtraction'}

genome.display() - graphically displays the topology.
~~~



#### To use BottleClient:

You will need to have an active bottle running on Intelligent Artifacts.  The bottle's information such as 'name' and secrete 'api_key' can be found in your IA account.

If on IA cloud:

~~~
from ialib.bottle_client import BottleClient

bottle_info = {'api_key': 'ABCD-1234',
               'name': 'genie-bottle',
               'domain': 'intelligent-artifacts.com',
               'secure': True}

test_bottle = BottleClient(bottle_info)
test_bottle
~~~


If local:
(Note: local, on-premises, on-board, at-the-edge, etc. usage requires licensing from Intelligent Artifacts. Send email to team@intelligent-artifacts.com for licensing support.)
~~~
from ialib.bottle_client import BottleClient

bottle_info = {'api_key': 'ABCD-1234',
               'name': 'genie-bottle',
               'domain': ':8181',
               'secure': False}

test_bottle = BottleClient(bottle_info)
test_bottle
~~~

Prior to utilizing the bottle, you must establish a connection between the client and bottle through the use of the connect method:

~~~
test_bottle.connect()
~~~

Note, this will download a copy of the genie's genome. Alternatively, you can manually inject your genie's genome into the bottle and connect in this manner:

~~~
test_bottle.inject_genome(genome)
~~~

Wait for return status.

Once you have a running genie, set ingress and query nodes by passing the node names in a list:

~~~
test_bottle.set_ingress_nodes(['P1'])
test_bottle.set_query_nodes(['P1'])
~~~

Send data to bottle:

~~~
data = {"strings": ["Hello"], "vectors": [], "determinants": []}
test_bottle.observe(data)
~~~

Query the bottle nodes:

~~~
print(test_bottle.show_status())
predictions = test_bottle.get_predictions()
~~~

You can also pass GenieMetalanguage data to the genie:

~~~
from ialib.genie_metalanguage import CLEAR_ALL_MEMORY, CLEAR_WM, LEARN, SET_PREDICTIONS_ON, SET_PREDICTIONS_OFF
test_bottle.observe(LEARN)
~~~

When sending classifications to a genie, it is best practice to send the classification as a singular symbol in the last event of a sequence.  This allows for querying the last event in the prediction's 'future' field for the answer.  The classification, though, should be sent to all the query nodes along with the ingress nodes.  The `observe_classification` function of the `BottleClient` class does that for us:

~~~
data = {"strings": ["World!"], "vectors": [], "determinants": []}
test_bottle.observe_classification(data)
~~~

#### To use Backtesting:

There are 3 built-in backtesting reports:

    - classification:
        - Train and predict a string value to be a classification of observed data.
    - utility - polarity:
        - Polarity is basically a +/- binary classification test using the prediction's 'utility' value.  It scores correct if the polarity of the prediction matches the polarity of the expected.
    - utility - value:
        - Value tests for the actual predicted value against the expected and scores correct if within a provided `tolerance_threshold`.

For each, the observed data can be a sequence of one or more events, containing any vectors or strings.




%package help
Summary:	Development documents and examples for ia-genie-sdk
Provides:	python3-ia-genie-sdk-doc
%description help
# Genie™ Python SDK
A Python SDK for Intelligent Artifacts' Genie™.

## What is Genie™?
Genie™ is a General Evolving Networked Intelligence Engine.  It is an Artificial General Intelligence platform for rapidly building machine intelligence solutions for any problem domain.

Genie™ requires an account on [Intelligent Artifacts] (https://www.intelligent-artifacts.com).

## What is Genie™ Python SDK?
This package, Genie™ Python SDK, is a software development kit for interacting with "GENIE agents" and "bottles" from Python.  It provides useful tools and services.

## Install
`pip install ia-genie-sdk`

Provides:

    - GenomeInfo
    - BottleClient
    - BackTesting

#### To use GenomeInfo:

You will need to download your genie's genome file from your Intelligent Artifacts account.

~~~
from ialib.GenomeInfo import Genome
import json

genome_topology = json.loads(genome_json_string)
genome = Genome(genome_topology)
~~~

If you want to have the topology displayed, you need to install cyjupter:

`pip3 install cyjupyter`


##### The useful functions are:
~~~
genome.agent - returns the name of the agent.
    ex: 'focusgenie'

genome.get_nodes() - returns 2-tuple of primitives and manipulatives genomic data.

genome.get_actions() - returns dictionary of primitives with lists of action IDs.
    ex: {'P1': ['ma23b1323',
                'm390d053c']}

genome.get_action_manipulatives() - returns a list of action manipulative IDs.
    ex: ['m390d053c',
         'ma23b1323']

genome.get_primitive_map() - returns a dictionary of primitive names to primitive IDs.
    ex: {'P1': 'p464b64bc'}

genome.get_manipulative_map() - returns a dictionary of manipulative IDs to manipulative names.
    ex: {'m390d053c': 'ACTIONPath',
         'ma23b1323': 'ACTIONPath',
         'mcd6d4d68': 'negateContext',
         'm40aaf174': 'vectorFilter',
         'med2ed537': 'vectorPassthrough',
         'm89aa2c7e': 'reduceVectorsBySubtraction'}

genome.display() - graphically displays the topology.
~~~



#### To use BottleClient:

You will need to have an active bottle running on Intelligent Artifacts.  The bottle's information such as 'name' and secrete 'api_key' can be found in your IA account.

If on IA cloud:

~~~
from ialib.bottle_client import BottleClient

bottle_info = {'api_key': 'ABCD-1234',
               'name': 'genie-bottle',
               'domain': 'intelligent-artifacts.com',
               'secure': True}

test_bottle = BottleClient(bottle_info)
test_bottle
~~~


If local:
(Note: local, on-premises, on-board, at-the-edge, etc. usage requires licensing from Intelligent Artifacts. Send email to team@intelligent-artifacts.com for licensing support.)
~~~
from ialib.bottle_client import BottleClient

bottle_info = {'api_key': 'ABCD-1234',
               'name': 'genie-bottle',
               'domain': ':8181',
               'secure': False}

test_bottle = BottleClient(bottle_info)
test_bottle
~~~

Prior to utilizing the bottle, you must establish a connection between the client and bottle through the use of the connect method:

~~~
test_bottle.connect()
~~~

Note, this will download a copy of the genie's genome. Alternatively, you can manually inject your genie's genome into the bottle and connect in this manner:

~~~
test_bottle.inject_genome(genome)
~~~

Wait for return status.

Once you have a running genie, set ingress and query nodes by passing the node names in a list:

~~~
test_bottle.set_ingress_nodes(['P1'])
test_bottle.set_query_nodes(['P1'])
~~~

Send data to bottle:

~~~
data = {"strings": ["Hello"], "vectors": [], "determinants": []}
test_bottle.observe(data)
~~~

Query the bottle nodes:

~~~
print(test_bottle.show_status())
predictions = test_bottle.get_predictions()
~~~

You can also pass GenieMetalanguage data to the genie:

~~~
from ialib.genie_metalanguage import CLEAR_ALL_MEMORY, CLEAR_WM, LEARN, SET_PREDICTIONS_ON, SET_PREDICTIONS_OFF
test_bottle.observe(LEARN)
~~~

When sending classifications to a genie, it is best practice to send the classification as a singular symbol in the last event of a sequence.  This allows for querying the last event in the prediction's 'future' field for the answer.  The classification, though, should be sent to all the query nodes along with the ingress nodes.  The `observe_classification` function of the `BottleClient` class does that for us:

~~~
data = {"strings": ["World!"], "vectors": [], "determinants": []}
test_bottle.observe_classification(data)
~~~

#### To use Backtesting:

There are 3 built-in backtesting reports:

    - classification:
        - Train and predict a string value to be a classification of observed data.
    - utility - polarity:
        - Polarity is basically a +/- binary classification test using the prediction's 'utility' value.  It scores correct if the polarity of the prediction matches the polarity of the expected.
    - utility - value:
        - Value tests for the actual predicted value against the expected and scores correct if within a provided `tolerance_threshold`.

For each, the observed data can be a sequence of one or more events, containing any vectors or strings.




%prep
%autosetup -n ia-genie-sdk-0.1.30

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-ia-genie-sdk -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.30-1
- Package Spec generated