1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
|
%global _empty_manifest_terminate_build 0
Name: python-ibm-watson-openscale-cli-tool
Version: 3.5.51
Release: 1
Summary: CLI library to automate the onboarding process to IBM Watson OpenScale
License: Apache-2.0
URL: https://www.ibm.com/cloud/watson-openscale
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/16/1c/a670b14c60dabea0fe8a218dd9386a3d58de0d1a35f5ed9bb356048f7c9b/ibm-watson-openscale-cli-tool-3.5.51.tar.gz
BuildArch: noarch
Requires: python3-h5py
Requires: python3-requests
Requires: python3-urllib3
Requires: python3-retry
Requires: python3-boto3
Requires: python3-psycopg2
Requires: python3-ibm-db
Requires: python3-ibm-cloud-sdk-core
Requires: python3-ibm-watson-openscale
Requires: python3-ibm-watson-machine-learning
Requires: python3-pandas
Requires: python3-pyJWT
%description
# ibm-watson-openscale-cli

[](https://pypi.python.org/pypi/ibm-watson-openscale-cli-tool)
IBM Watson Openscale "express path" configuration tool. This tool allows the user to get started quickly with Watson OpenScale.
* If needed, automatically provision a Lite plan instance for IBM Watson OpenScale.
* If needed, automatically provision a Lite plan instance for IBM Watson Machine Learning.
* Drop and re-create the IBM Watson OpenScale datamart instance and datamart database schema.
* Optionally, deploy a sample machine learning model to the WML instance.
* Configure the sample model instance to OpenScale, including payload logging, fairness checking, feedback, quality checking, drift checking, and explainability.
* Optionally, store up to 7 days of historical payload, fairness, quality and drift for the sample model.
* Upload new feedback data, generate 100 new live scoring predictions, run fairness, quality, drift, and correlation checks, and generate one explanation.
## What's new in this release
* Support for WML v4 python client, using the new `--v4` option. Note that this requires some manual intervention:
1. manually uninstall the regular watson-machine-learning-client python package (if installed),
2. manually install the watson-machine-learning-client-V4 python package,
3. and only then install or upgrade ibm-watson-openscale-cli-tool.
* Other bug fixes and stability improvements.
## Before you begin
* You need an [IBM Cloud][ibm_cloud] account.
* Create an [IBM Cloud API key](https://console.bluemix.net/docs/iam/userid_keys.html#userapikey).
* If you already have a Watson Machine Learning (WML) instance, ensure it's RC-enabled, learn more about this in the [migration instructions](https://console.bluemix.net/docs/resources/instance_migration.html#migrate).
## Installation
To install, use `pip` or `easy_install`:
```bash
pip install -U ibm-watson-openscale-cli-tool
```
or
```bash
easy_install -U ibm-watson-openscale-cli-tool
```
## Usage
```
ibm-watson-openscale-cli --help
usage: ibm-watson-openscale-cli [-h] (-a APIKEY | -i IAM_TOKEN)
[--env {ypprod,ypqa,ypcr,ys1dev,icp}]
[--resource-group RESOURCE_GROUP]
[--postgres POSTGRES] [--icd ICD] [--db2 DB2]
[--deployment-name DEPLOYMENT_NAME]
[--keep-schema] [--username USERNAME]
[--password PASSWORD] [--url URL]
[--datamart-name DATAMART_NAME]
[--datamart-id DATAMART_ID]
[--history HISTORY] [--history-only]
[--history-first-day HISTORY_FIRST_DAY]
[--model MODEL] [--list-models]
[--custom-model CUSTOM_MODEL]
[--custom-model-directory CUSTOM_MODEL_DIRECTORY]
[--extend] [--protect-datamart]
[--iam-integration] [--bedrock-url]
[--reset {metrics,monitors,datamart,model,all}]
[--verbose] [--version] [--v4]
[--wml-plan {lite,standard,professional}]
[--openscale-plan {lite,standard}]
[--generate-drift-history]
IBM Watson Openscale "express path" configuration tool. This tool allows the
user to get started quickly with Watson OpenScale: 1) If needed, provision a
Lite plan instance for IBM Watson OpenScale 2) If needed, provision a Lite
plan instance for IBM Watson Machine Learning 3) Drop and re-create the IBM
Watson OpenScale datamart instance and datamart database schema 4) Optionally,
deploy a sample machine learning model to the WML instance 5) Configure the
sample model instance to OpenScale, including payload logging, fairness
checking, feedback, quality checking, drift, and explainability
6) Optionally, store up to 7 days of historical payload, fairness, quality and drift for the sample model. 7) Upload new feedback data,
generate 100 new live scoring predictions, run fairness, quality and drift checks, and generate one explanation.
optional arguments:
-h, --help show this help message and exit
--env {ypprod,ypqa,ypcr,ys1dev,icp}
Environment. Default "ypprod"
--resource-group RESOURCE_GROUP
Resource Group to use. If not specified, then
"default" group is used
--postgres POSTGRES Path to postgres credentials file for the datamart
database. If --postgres, --icd, and --db2 all are not
specified, then the internal Watson OpenScale database
is used
--icd ICD Path to IBM Cloud Database credentials file for the
datamart database
--db2 DB2 Path to IBM DB2 credentials file for the datamart
database
--deployment-name DEPLOYMENT_NAME
Name of the existing deployment to use. Required for
Azure ML Studio, SPSS Engine and Custom ML Engine, but
optional for Watson Machine Learning. Required for
custom models
--keep-schema Use pre-existing datamart schema, only dropping all
tables. If not specified, datamart schema is dropped
and re-created
--username USERNAME ICP username. Required if "icp" environment is chosen,
not required if --iam-token is specified
--password PASSWORD ICP password. Required if "icp" environment is chosen,
not required if --iam-token is specified
--url URL ICP url. Required if "icp" environment is chosen
--datamart-id DATAMART_ID
Specify data mart id. For icp environment, default is
"00000000-0000-0000-0000-000000000000"
--datamart-name DATAMART_NAME
Specify data mart name and database schema, default is
the datamart database connection username. For
internal database, the default is "wosfastpath"
--history HISTORY Days of history to preload. Default is 7
--history-only Store history only for existing deployment and
datamart. Requires --extend and --deployment-name also
be specified
--history-first-day HISTORY_FIRST_DAY
Starting day for history. Default is 0
--model MODEL Sample model to set up with Watson OpenScale (default
"GermanCreditRiskModel")
--list-models Lists all available models. If a ML engine is
specified, then modesl specific to that engine are
listed
--custom-model CUSTOM_MODEL
Name of custom model to set up with Watson OpenScale.
If specified, overrides the value set by --model. Also
requires that --custom-model-directory
--custom-model-directory CUSTOM_MODEL_DIRECTORY
Directory with model configuration and metadata files.
Also requires that --custom-model be specified
--extend Extend existing datamart, instead of deleting and
recreating it
--protect-datamart If specified, the setup will exit if an existing
datamart setup is found
--iam-integration Must be specified when running in a Cloud Pak for Data environment with iam_integration enabled.
--bedrock-url Must be specified when running in a Cloud Pak for Data environment with iam_integration enabled.
--reset {metrics,monitors,datamart,model,all}
Reset existing datamart and/or sample models then exit
--verbose verbose flag
--wml-plan {lite,standard,professional}
If no WML instance exists, then provision one with the
specified plan. Default is "lite", other plans are
paid plans
--openscale-plan {lite,standard}
If no OpenScale instance exists, then provision one
with the specified plan. Default is "lite", other
plans are paid plans
--version show program's version number and exit
--v4 Enable support for WML v4 python client
--generate-drift-history
Generate drift history with live execution instead of
loading from pre-generated history. Only needed for
backward compatiblity for GermanCreditRiskModel in
CP4D v2.1.0.2 (August 2019 GA)
required arguments (only one needed):
-a APIKEY, --apikey APIKEY
IBM Cloud platform user APIKey. If "--env icp" is also
specified, APIKey value is not used.
-i IAM_TOKEN, --iam-token IAM_TOKEN
IBM Cloud authentication IAM token, or IBM Cloud
private authentication IAM token. Format can be
(--iam-token "Bearer <token>") or (--iam-token
<token>)
```
## Examples
In this example, if a WML instance already exists it is used, but if not a new Lite plan instance is provisioned and used.
If an OpenScale instance exists, its datamart is dropped and recreated along with its datamart internal database schema.
Otherwise, a Lite plan OpenScale instance is provisioned.
The GermanCreditRiskModel is stored and deployed in WML, configured to OpenScale, and 7 days' historical data stored.
Then new feedback data is uploaded, 100 new live scoring predictions are made, followed by fairness, quality, drift, and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
ibm-watson-openscale-cli --apikey $APIKEY
```
In this example, assume the user already has provisioned instances of WML, OpenScale, IBM Cloud Database for Postgres (ICD), and has selected a schema for the OpenScale datamart database.
The OpenScale datamart is dropped and recreated, and the datamart's database schema is dropped and recreated.
An already-deployed instance of the DrugSelectionModel is configured to OpenScale, and 7 days' historical data stored,
followed by new feedback data upload, 100 new scores, fairness, quality, drift and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export WML=<path to WML instance credentials JSON file>
export ICD=<path to ICD instance credentials JSON file>
export SCHEMA=<ICD database schema name>
ibm-watson-openscale-cli --apikey $APIKEY --wml $WML --model DrugSelectionModel --deployment-name DrugSelectionModelDeployment --icd $ICD --datamart-name $SCHEMA
```
In this example, assume the user already has provisioned an Entry plan instance of IBM DB2 Warehouse on Cloud.
The OpenScale datamart's tables within the user's existing DB2 schema are dropped and recreated.
The GermanCreditRiskModel is stored and deployed in WML, configured to OpenScale, and 7 days' historical data stored,
followed by new feedback data upload, 100 new scores, fairness, quality, drift and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export DB2=<path to DB2 instance credentials JSON file>
export SCHEMA=<user's DB2 database schema>
ibm-watson-openscale-cli --apikey $APIKEY --db2 $DB2 --datamart-name $SCHEMA --keep-schema
```
In this example, assume the user has their own custom model named MyBusinessModel stored in WML and deployed as MyBusinessModelDeployment.
Also assume they already have a provisioned instance of OpenScale which has not yet been configured.
In the custom model directory, the user has provided a `configuration.json` file with the required model configuration details.
The OpenScale datamart and datamart database schema are created, and the MyBusinessModelDeployment is configured to OpenScale.
Then new feedback data is uploaded (if provided), 100 new scoring requests are made to the model, followed by fairness and quality checks (if configured), and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export WML=<path to WML instance credentials JSON file>
export MODELPATH=<path to custom model directory>
ibm-watson-openscale-cli --apikey $APIKEY --wml $WML --custom-model MyBusinessModel --deployment-name MyBusinessModelDeployment --custom-model-directory $MODELPATH
```
## FAQ
### Q: What is the GermanCreditRiskModel sample model?
A. The GermanCreditRiskModel sample model is taken from the "Watson Studio, Watson Machine Learning and Watson OpenScale samples"
[GitHub repo](https://github.com/IBM/watson-openscale-samples), specifically the IBM Watson OpenScale [tutorials](https://github.com/IBM/watson-openscale-samples).
When you run ibm-watson-openscale-cli to deploy and configure the GermanCreditRiskModel, the result will be as if you had run the tutorial notebook appropriate
for your machine learning engine.
### Q: What are the formats for the credentials files?
A: Each credential file has its own format:
Postgres
```
{
"uri": "postgres://<USERNAME>:<PASSWORD>@<HOSTNAME>:<PORT>/<DB>"
}
```
IBM Cloud Database for Postgres(ICD)
* Copy the Service Credentials from your ICD service instance in IBM Cloud
DB2
```
{
"username": "<USERNAME>",
"password": "<PASSWORD>",
"hostname": "<HOSTNAME>",
"port": "<PORT>",
"db": "<DB>"
}
```
### Q: How do the reset options work?
A: The reset options each affect a different level of data in the datamart:
* `--reset metrics` : Clean up the payload logging table, monitoring history tables etc, so that it restores the system to a fresh state with datamart configured, model deployments added, all monitors configured, but no actual metrics in the system yet. The system is ready to go. Not supported for Watson OpenScale internal databases.
* `--reset monitors` : Remove all configured monitors and corresponding metrics and history, but leave the actual model deployments (if any) in the datamart. User can proceed to configure the monitors via user interface, API, or ibm-watson-openscale-cli.
* `--reset datamart` : "Factory reset" the datamart to a fresh state as if there was not any configuration.
* `--reset model` : Delete the sample models and deployments from WML. Not yet supported for non-WML engines. Does not affect the datamart.
* `--reset all` : Reset both the datamart and sample models.
### Q: Can I use SSL for connecting to the datamart DB2 database?
A: Yes. The below options can be used for connecting to a DB2 with SSL:
1. DB2 Warehouse on Cloud databases automatically support SSL, using the VCAP json file generated on the "Service Credentials" page.
2. For on-prem or ICP4D DB2 databases:
1. You can specify the path on the local client machine to a copy of the DB2 server's SSL certificate "arm" file,
using an "ssldsn" connection string in the VCAP json file:
```
{
"hostname": "<ipaddr>",
"username": "<uid>",
"password": "<pw>",
"port": 50000,
"db": "<dbname>",
"ssldsn": "DATABASE=<dbname>;HOSTNAME=<ipaddr>;PORT=50001;PROTOCOL=TCPIP;UID=<uid>;PWD=<pw>;Security=ssl;SSLServerCertificate=/path_on_local_client_machine_to/db2server_instance.arm;"
}
```
2. You can specify the base64-encoded certificate as the `certificate_base64` attribute directly in the credentials along with a `ssl` attribute set to true, as below:
```
{
"hostname": "<ipaddr>",
"username": "<uid>",
"password": "<pw>",
"port": 50000,
"db": "<dbname>",
"ssl": true,
"certificate_base64":"Base64 encoded SSL certificate"
}
```
If SSL connections are not needed, or not configured on the DB2 server, you can remove the "ssldsn" tag and ibm-watson-openscale-cli will use the non-SSL "dsn" tag instead.
If the VCAP has both dsn and ssldsn tags, ibm-watson-openscale-cli will use "ssldsn" tag to create an SSL connection.
### Q: What are the contents of a custom model directory?
A: These files are used to configure a custom model to IBM Watson OpenScale:
Required
* `configuration.json`: the model configuration details
Optional
* `model_content.gzip`: exported model file from WML, to be loaded and deployed into WML if `--deployment-name` is not specified
* `model_meta.json`: exported model metadata from WML (required if model gzip is provided)
* `pipeline_content.gzip`: exported model pipeline file from WML, to be loaded and deployed into WML if `--deployment-name` is not specified
* `pipeline_meta.json`: exported model pipeline metadata from WML (required if pipeline gzip is provided)
* `drift_model.gzip`: exported model file from WML for a trained Drift model (required if drift configuration provided in configuration.json)
#### Syntax of configuration.json
A JSON file that specifies the OpenScale configuration for the model. The key components are:
* `asset_metadata` (required): top-level model specification elements
* `training_data_reference` (required): reference to the model training data csv in COS
* `training_data_type` (optional): required if there are any numeric-valued model features
* `quality_configuration` (optional): if applicable for the model
* `fairness_configuration` (optional): if applicable for the model
* `drift_configuration` (optional): if applicable for the model
Valid values for parameters in `asset_metadata`:
* `problem_type`: `REGRESSION`, `BINARY_CLASSIFICATION`, `MULTICLASS_CLASSIFICATION`
* `input_data_type`: `STRUCTURED`
Here is an example:
```
{
"asset_metadata": {
"problem_type": "BINARY_CLASSIFICATION",
"input_data_type": "STRUCTURED",
"label_column": "Risk",
"prediction_column": "Scored Labels",
"probability_column": "Scored Probabilities",
"categorical_columns": [ "CheckingStatus" ],
"feature_columns": [ "CheckingStatus", "LoanDuration", "Age" ]
},
"training_data_reference": {
"credentials" : {<IBM Cloud COS credentials>},
"path" : "<path within COS to training data csv file (bucket name + / + filename)>",
"firstlineheader": "True"
},
"training_data_type": { "LoanDuration": "int", "Age": "int" },
"quality_configuration": { "threshold": 0.95, "min_records": 40 },
"fairness_configuration": {
"features": [
{
"feature": "Age",
"majority": [[ 26, 75 ]],
"minority": [[ 18, 25 ]],
"threshold": 0.98
}
],
"favourable_classes": [ "No Risk" ],
"unfavourable_classes": [ "Risk" ],
"min_records": 100
},
"drift_configuration": {
"threshold": 0.15,
"min_records": 100
}
}
```
#### Syntax of `training_data.csv`
A CSV file of the data used to train the model.
This data is also used by live scoring requests to the model using the range of actual values for each feature from the training data.
A header row is required, with column names that match the model's feature names.
Any column with numeric values must be included in the `training_data_type` specification in the `configuration.json`.
A typical example:
```
CheckingStatus,LoanDuration,Age,Risk
no_checking,28,30,Risk
0_to_200,28,27,No Risk
. . .
```
## Python version
Tested on Python 3.6, 3.7, 3.8, 3.9.
## Troubleshooting
In some platforms if you're facing problems with the installation of the CLI tool, please use the following commands to install packages:
```
python -m pip install setuptools==50.3.2
python -m pip install psycopg2-binary
```
## Contributing
See [CONTRIBUTING.md][CONTRIBUTING].
## License
This library is licensed under the [Apache 2.0 license][license].
[ibm_cloud]: https://cloud.ibm.com
[responses]: https://github.com/getsentry/responses
[requests]: http://docs.python-requests.org/en/latest/
[CONTRIBUTING]: ./CONTRIBUTING.md
[license]: http://www.apache.org/licenses/LICENSE-2.0
%package -n python3-ibm-watson-openscale-cli-tool
Summary: CLI library to automate the onboarding process to IBM Watson OpenScale
Provides: python-ibm-watson-openscale-cli-tool
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ibm-watson-openscale-cli-tool
# ibm-watson-openscale-cli

[](https://pypi.python.org/pypi/ibm-watson-openscale-cli-tool)
IBM Watson Openscale "express path" configuration tool. This tool allows the user to get started quickly with Watson OpenScale.
* If needed, automatically provision a Lite plan instance for IBM Watson OpenScale.
* If needed, automatically provision a Lite plan instance for IBM Watson Machine Learning.
* Drop and re-create the IBM Watson OpenScale datamart instance and datamart database schema.
* Optionally, deploy a sample machine learning model to the WML instance.
* Configure the sample model instance to OpenScale, including payload logging, fairness checking, feedback, quality checking, drift checking, and explainability.
* Optionally, store up to 7 days of historical payload, fairness, quality and drift for the sample model.
* Upload new feedback data, generate 100 new live scoring predictions, run fairness, quality, drift, and correlation checks, and generate one explanation.
## What's new in this release
* Support for WML v4 python client, using the new `--v4` option. Note that this requires some manual intervention:
1. manually uninstall the regular watson-machine-learning-client python package (if installed),
2. manually install the watson-machine-learning-client-V4 python package,
3. and only then install or upgrade ibm-watson-openscale-cli-tool.
* Other bug fixes and stability improvements.
## Before you begin
* You need an [IBM Cloud][ibm_cloud] account.
* Create an [IBM Cloud API key](https://console.bluemix.net/docs/iam/userid_keys.html#userapikey).
* If you already have a Watson Machine Learning (WML) instance, ensure it's RC-enabled, learn more about this in the [migration instructions](https://console.bluemix.net/docs/resources/instance_migration.html#migrate).
## Installation
To install, use `pip` or `easy_install`:
```bash
pip install -U ibm-watson-openscale-cli-tool
```
or
```bash
easy_install -U ibm-watson-openscale-cli-tool
```
## Usage
```
ibm-watson-openscale-cli --help
usage: ibm-watson-openscale-cli [-h] (-a APIKEY | -i IAM_TOKEN)
[--env {ypprod,ypqa,ypcr,ys1dev,icp}]
[--resource-group RESOURCE_GROUP]
[--postgres POSTGRES] [--icd ICD] [--db2 DB2]
[--deployment-name DEPLOYMENT_NAME]
[--keep-schema] [--username USERNAME]
[--password PASSWORD] [--url URL]
[--datamart-name DATAMART_NAME]
[--datamart-id DATAMART_ID]
[--history HISTORY] [--history-only]
[--history-first-day HISTORY_FIRST_DAY]
[--model MODEL] [--list-models]
[--custom-model CUSTOM_MODEL]
[--custom-model-directory CUSTOM_MODEL_DIRECTORY]
[--extend] [--protect-datamart]
[--iam-integration] [--bedrock-url]
[--reset {metrics,monitors,datamart,model,all}]
[--verbose] [--version] [--v4]
[--wml-plan {lite,standard,professional}]
[--openscale-plan {lite,standard}]
[--generate-drift-history]
IBM Watson Openscale "express path" configuration tool. This tool allows the
user to get started quickly with Watson OpenScale: 1) If needed, provision a
Lite plan instance for IBM Watson OpenScale 2) If needed, provision a Lite
plan instance for IBM Watson Machine Learning 3) Drop and re-create the IBM
Watson OpenScale datamart instance and datamart database schema 4) Optionally,
deploy a sample machine learning model to the WML instance 5) Configure the
sample model instance to OpenScale, including payload logging, fairness
checking, feedback, quality checking, drift, and explainability
6) Optionally, store up to 7 days of historical payload, fairness, quality and drift for the sample model. 7) Upload new feedback data,
generate 100 new live scoring predictions, run fairness, quality and drift checks, and generate one explanation.
optional arguments:
-h, --help show this help message and exit
--env {ypprod,ypqa,ypcr,ys1dev,icp}
Environment. Default "ypprod"
--resource-group RESOURCE_GROUP
Resource Group to use. If not specified, then
"default" group is used
--postgres POSTGRES Path to postgres credentials file for the datamart
database. If --postgres, --icd, and --db2 all are not
specified, then the internal Watson OpenScale database
is used
--icd ICD Path to IBM Cloud Database credentials file for the
datamart database
--db2 DB2 Path to IBM DB2 credentials file for the datamart
database
--deployment-name DEPLOYMENT_NAME
Name of the existing deployment to use. Required for
Azure ML Studio, SPSS Engine and Custom ML Engine, but
optional for Watson Machine Learning. Required for
custom models
--keep-schema Use pre-existing datamart schema, only dropping all
tables. If not specified, datamart schema is dropped
and re-created
--username USERNAME ICP username. Required if "icp" environment is chosen,
not required if --iam-token is specified
--password PASSWORD ICP password. Required if "icp" environment is chosen,
not required if --iam-token is specified
--url URL ICP url. Required if "icp" environment is chosen
--datamart-id DATAMART_ID
Specify data mart id. For icp environment, default is
"00000000-0000-0000-0000-000000000000"
--datamart-name DATAMART_NAME
Specify data mart name and database schema, default is
the datamart database connection username. For
internal database, the default is "wosfastpath"
--history HISTORY Days of history to preload. Default is 7
--history-only Store history only for existing deployment and
datamart. Requires --extend and --deployment-name also
be specified
--history-first-day HISTORY_FIRST_DAY
Starting day for history. Default is 0
--model MODEL Sample model to set up with Watson OpenScale (default
"GermanCreditRiskModel")
--list-models Lists all available models. If a ML engine is
specified, then modesl specific to that engine are
listed
--custom-model CUSTOM_MODEL
Name of custom model to set up with Watson OpenScale.
If specified, overrides the value set by --model. Also
requires that --custom-model-directory
--custom-model-directory CUSTOM_MODEL_DIRECTORY
Directory with model configuration and metadata files.
Also requires that --custom-model be specified
--extend Extend existing datamart, instead of deleting and
recreating it
--protect-datamart If specified, the setup will exit if an existing
datamart setup is found
--iam-integration Must be specified when running in a Cloud Pak for Data environment with iam_integration enabled.
--bedrock-url Must be specified when running in a Cloud Pak for Data environment with iam_integration enabled.
--reset {metrics,monitors,datamart,model,all}
Reset existing datamart and/or sample models then exit
--verbose verbose flag
--wml-plan {lite,standard,professional}
If no WML instance exists, then provision one with the
specified plan. Default is "lite", other plans are
paid plans
--openscale-plan {lite,standard}
If no OpenScale instance exists, then provision one
with the specified plan. Default is "lite", other
plans are paid plans
--version show program's version number and exit
--v4 Enable support for WML v4 python client
--generate-drift-history
Generate drift history with live execution instead of
loading from pre-generated history. Only needed for
backward compatiblity for GermanCreditRiskModel in
CP4D v2.1.0.2 (August 2019 GA)
required arguments (only one needed):
-a APIKEY, --apikey APIKEY
IBM Cloud platform user APIKey. If "--env icp" is also
specified, APIKey value is not used.
-i IAM_TOKEN, --iam-token IAM_TOKEN
IBM Cloud authentication IAM token, or IBM Cloud
private authentication IAM token. Format can be
(--iam-token "Bearer <token>") or (--iam-token
<token>)
```
## Examples
In this example, if a WML instance already exists it is used, but if not a new Lite plan instance is provisioned and used.
If an OpenScale instance exists, its datamart is dropped and recreated along with its datamart internal database schema.
Otherwise, a Lite plan OpenScale instance is provisioned.
The GermanCreditRiskModel is stored and deployed in WML, configured to OpenScale, and 7 days' historical data stored.
Then new feedback data is uploaded, 100 new live scoring predictions are made, followed by fairness, quality, drift, and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
ibm-watson-openscale-cli --apikey $APIKEY
```
In this example, assume the user already has provisioned instances of WML, OpenScale, IBM Cloud Database for Postgres (ICD), and has selected a schema for the OpenScale datamart database.
The OpenScale datamart is dropped and recreated, and the datamart's database schema is dropped and recreated.
An already-deployed instance of the DrugSelectionModel is configured to OpenScale, and 7 days' historical data stored,
followed by new feedback data upload, 100 new scores, fairness, quality, drift and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export WML=<path to WML instance credentials JSON file>
export ICD=<path to ICD instance credentials JSON file>
export SCHEMA=<ICD database schema name>
ibm-watson-openscale-cli --apikey $APIKEY --wml $WML --model DrugSelectionModel --deployment-name DrugSelectionModelDeployment --icd $ICD --datamart-name $SCHEMA
```
In this example, assume the user already has provisioned an Entry plan instance of IBM DB2 Warehouse on Cloud.
The OpenScale datamart's tables within the user's existing DB2 schema are dropped and recreated.
The GermanCreditRiskModel is stored and deployed in WML, configured to OpenScale, and 7 days' historical data stored,
followed by new feedback data upload, 100 new scores, fairness, quality, drift and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export DB2=<path to DB2 instance credentials JSON file>
export SCHEMA=<user's DB2 database schema>
ibm-watson-openscale-cli --apikey $APIKEY --db2 $DB2 --datamart-name $SCHEMA --keep-schema
```
In this example, assume the user has their own custom model named MyBusinessModel stored in WML and deployed as MyBusinessModelDeployment.
Also assume they already have a provisioned instance of OpenScale which has not yet been configured.
In the custom model directory, the user has provided a `configuration.json` file with the required model configuration details.
The OpenScale datamart and datamart database schema are created, and the MyBusinessModelDeployment is configured to OpenScale.
Then new feedback data is uploaded (if provided), 100 new scoring requests are made to the model, followed by fairness and quality checks (if configured), and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export WML=<path to WML instance credentials JSON file>
export MODELPATH=<path to custom model directory>
ibm-watson-openscale-cli --apikey $APIKEY --wml $WML --custom-model MyBusinessModel --deployment-name MyBusinessModelDeployment --custom-model-directory $MODELPATH
```
## FAQ
### Q: What is the GermanCreditRiskModel sample model?
A. The GermanCreditRiskModel sample model is taken from the "Watson Studio, Watson Machine Learning and Watson OpenScale samples"
[GitHub repo](https://github.com/IBM/watson-openscale-samples), specifically the IBM Watson OpenScale [tutorials](https://github.com/IBM/watson-openscale-samples).
When you run ibm-watson-openscale-cli to deploy and configure the GermanCreditRiskModel, the result will be as if you had run the tutorial notebook appropriate
for your machine learning engine.
### Q: What are the formats for the credentials files?
A: Each credential file has its own format:
Postgres
```
{
"uri": "postgres://<USERNAME>:<PASSWORD>@<HOSTNAME>:<PORT>/<DB>"
}
```
IBM Cloud Database for Postgres(ICD)
* Copy the Service Credentials from your ICD service instance in IBM Cloud
DB2
```
{
"username": "<USERNAME>",
"password": "<PASSWORD>",
"hostname": "<HOSTNAME>",
"port": "<PORT>",
"db": "<DB>"
}
```
### Q: How do the reset options work?
A: The reset options each affect a different level of data in the datamart:
* `--reset metrics` : Clean up the payload logging table, monitoring history tables etc, so that it restores the system to a fresh state with datamart configured, model deployments added, all monitors configured, but no actual metrics in the system yet. The system is ready to go. Not supported for Watson OpenScale internal databases.
* `--reset monitors` : Remove all configured monitors and corresponding metrics and history, but leave the actual model deployments (if any) in the datamart. User can proceed to configure the monitors via user interface, API, or ibm-watson-openscale-cli.
* `--reset datamart` : "Factory reset" the datamart to a fresh state as if there was not any configuration.
* `--reset model` : Delete the sample models and deployments from WML. Not yet supported for non-WML engines. Does not affect the datamart.
* `--reset all` : Reset both the datamart and sample models.
### Q: Can I use SSL for connecting to the datamart DB2 database?
A: Yes. The below options can be used for connecting to a DB2 with SSL:
1. DB2 Warehouse on Cloud databases automatically support SSL, using the VCAP json file generated on the "Service Credentials" page.
2. For on-prem or ICP4D DB2 databases:
1. You can specify the path on the local client machine to a copy of the DB2 server's SSL certificate "arm" file,
using an "ssldsn" connection string in the VCAP json file:
```
{
"hostname": "<ipaddr>",
"username": "<uid>",
"password": "<pw>",
"port": 50000,
"db": "<dbname>",
"ssldsn": "DATABASE=<dbname>;HOSTNAME=<ipaddr>;PORT=50001;PROTOCOL=TCPIP;UID=<uid>;PWD=<pw>;Security=ssl;SSLServerCertificate=/path_on_local_client_machine_to/db2server_instance.arm;"
}
```
2. You can specify the base64-encoded certificate as the `certificate_base64` attribute directly in the credentials along with a `ssl` attribute set to true, as below:
```
{
"hostname": "<ipaddr>",
"username": "<uid>",
"password": "<pw>",
"port": 50000,
"db": "<dbname>",
"ssl": true,
"certificate_base64":"Base64 encoded SSL certificate"
}
```
If SSL connections are not needed, or not configured on the DB2 server, you can remove the "ssldsn" tag and ibm-watson-openscale-cli will use the non-SSL "dsn" tag instead.
If the VCAP has both dsn and ssldsn tags, ibm-watson-openscale-cli will use "ssldsn" tag to create an SSL connection.
### Q: What are the contents of a custom model directory?
A: These files are used to configure a custom model to IBM Watson OpenScale:
Required
* `configuration.json`: the model configuration details
Optional
* `model_content.gzip`: exported model file from WML, to be loaded and deployed into WML if `--deployment-name` is not specified
* `model_meta.json`: exported model metadata from WML (required if model gzip is provided)
* `pipeline_content.gzip`: exported model pipeline file from WML, to be loaded and deployed into WML if `--deployment-name` is not specified
* `pipeline_meta.json`: exported model pipeline metadata from WML (required if pipeline gzip is provided)
* `drift_model.gzip`: exported model file from WML for a trained Drift model (required if drift configuration provided in configuration.json)
#### Syntax of configuration.json
A JSON file that specifies the OpenScale configuration for the model. The key components are:
* `asset_metadata` (required): top-level model specification elements
* `training_data_reference` (required): reference to the model training data csv in COS
* `training_data_type` (optional): required if there are any numeric-valued model features
* `quality_configuration` (optional): if applicable for the model
* `fairness_configuration` (optional): if applicable for the model
* `drift_configuration` (optional): if applicable for the model
Valid values for parameters in `asset_metadata`:
* `problem_type`: `REGRESSION`, `BINARY_CLASSIFICATION`, `MULTICLASS_CLASSIFICATION`
* `input_data_type`: `STRUCTURED`
Here is an example:
```
{
"asset_metadata": {
"problem_type": "BINARY_CLASSIFICATION",
"input_data_type": "STRUCTURED",
"label_column": "Risk",
"prediction_column": "Scored Labels",
"probability_column": "Scored Probabilities",
"categorical_columns": [ "CheckingStatus" ],
"feature_columns": [ "CheckingStatus", "LoanDuration", "Age" ]
},
"training_data_reference": {
"credentials" : {<IBM Cloud COS credentials>},
"path" : "<path within COS to training data csv file (bucket name + / + filename)>",
"firstlineheader": "True"
},
"training_data_type": { "LoanDuration": "int", "Age": "int" },
"quality_configuration": { "threshold": 0.95, "min_records": 40 },
"fairness_configuration": {
"features": [
{
"feature": "Age",
"majority": [[ 26, 75 ]],
"minority": [[ 18, 25 ]],
"threshold": 0.98
}
],
"favourable_classes": [ "No Risk" ],
"unfavourable_classes": [ "Risk" ],
"min_records": 100
},
"drift_configuration": {
"threshold": 0.15,
"min_records": 100
}
}
```
#### Syntax of `training_data.csv`
A CSV file of the data used to train the model.
This data is also used by live scoring requests to the model using the range of actual values for each feature from the training data.
A header row is required, with column names that match the model's feature names.
Any column with numeric values must be included in the `training_data_type` specification in the `configuration.json`.
A typical example:
```
CheckingStatus,LoanDuration,Age,Risk
no_checking,28,30,Risk
0_to_200,28,27,No Risk
. . .
```
## Python version
Tested on Python 3.6, 3.7, 3.8, 3.9.
## Troubleshooting
In some platforms if you're facing problems with the installation of the CLI tool, please use the following commands to install packages:
```
python -m pip install setuptools==50.3.2
python -m pip install psycopg2-binary
```
## Contributing
See [CONTRIBUTING.md][CONTRIBUTING].
## License
This library is licensed under the [Apache 2.0 license][license].
[ibm_cloud]: https://cloud.ibm.com
[responses]: https://github.com/getsentry/responses
[requests]: http://docs.python-requests.org/en/latest/
[CONTRIBUTING]: ./CONTRIBUTING.md
[license]: http://www.apache.org/licenses/LICENSE-2.0
%package help
Summary: Development documents and examples for ibm-watson-openscale-cli-tool
Provides: python3-ibm-watson-openscale-cli-tool-doc
%description help
# ibm-watson-openscale-cli

[](https://pypi.python.org/pypi/ibm-watson-openscale-cli-tool)
IBM Watson Openscale "express path" configuration tool. This tool allows the user to get started quickly with Watson OpenScale.
* If needed, automatically provision a Lite plan instance for IBM Watson OpenScale.
* If needed, automatically provision a Lite plan instance for IBM Watson Machine Learning.
* Drop and re-create the IBM Watson OpenScale datamart instance and datamart database schema.
* Optionally, deploy a sample machine learning model to the WML instance.
* Configure the sample model instance to OpenScale, including payload logging, fairness checking, feedback, quality checking, drift checking, and explainability.
* Optionally, store up to 7 days of historical payload, fairness, quality and drift for the sample model.
* Upload new feedback data, generate 100 new live scoring predictions, run fairness, quality, drift, and correlation checks, and generate one explanation.
## What's new in this release
* Support for WML v4 python client, using the new `--v4` option. Note that this requires some manual intervention:
1. manually uninstall the regular watson-machine-learning-client python package (if installed),
2. manually install the watson-machine-learning-client-V4 python package,
3. and only then install or upgrade ibm-watson-openscale-cli-tool.
* Other bug fixes and stability improvements.
## Before you begin
* You need an [IBM Cloud][ibm_cloud] account.
* Create an [IBM Cloud API key](https://console.bluemix.net/docs/iam/userid_keys.html#userapikey).
* If you already have a Watson Machine Learning (WML) instance, ensure it's RC-enabled, learn more about this in the [migration instructions](https://console.bluemix.net/docs/resources/instance_migration.html#migrate).
## Installation
To install, use `pip` or `easy_install`:
```bash
pip install -U ibm-watson-openscale-cli-tool
```
or
```bash
easy_install -U ibm-watson-openscale-cli-tool
```
## Usage
```
ibm-watson-openscale-cli --help
usage: ibm-watson-openscale-cli [-h] (-a APIKEY | -i IAM_TOKEN)
[--env {ypprod,ypqa,ypcr,ys1dev,icp}]
[--resource-group RESOURCE_GROUP]
[--postgres POSTGRES] [--icd ICD] [--db2 DB2]
[--deployment-name DEPLOYMENT_NAME]
[--keep-schema] [--username USERNAME]
[--password PASSWORD] [--url URL]
[--datamart-name DATAMART_NAME]
[--datamart-id DATAMART_ID]
[--history HISTORY] [--history-only]
[--history-first-day HISTORY_FIRST_DAY]
[--model MODEL] [--list-models]
[--custom-model CUSTOM_MODEL]
[--custom-model-directory CUSTOM_MODEL_DIRECTORY]
[--extend] [--protect-datamart]
[--iam-integration] [--bedrock-url]
[--reset {metrics,monitors,datamart,model,all}]
[--verbose] [--version] [--v4]
[--wml-plan {lite,standard,professional}]
[--openscale-plan {lite,standard}]
[--generate-drift-history]
IBM Watson Openscale "express path" configuration tool. This tool allows the
user to get started quickly with Watson OpenScale: 1) If needed, provision a
Lite plan instance for IBM Watson OpenScale 2) If needed, provision a Lite
plan instance for IBM Watson Machine Learning 3) Drop and re-create the IBM
Watson OpenScale datamart instance and datamart database schema 4) Optionally,
deploy a sample machine learning model to the WML instance 5) Configure the
sample model instance to OpenScale, including payload logging, fairness
checking, feedback, quality checking, drift, and explainability
6) Optionally, store up to 7 days of historical payload, fairness, quality and drift for the sample model. 7) Upload new feedback data,
generate 100 new live scoring predictions, run fairness, quality and drift checks, and generate one explanation.
optional arguments:
-h, --help show this help message and exit
--env {ypprod,ypqa,ypcr,ys1dev,icp}
Environment. Default "ypprod"
--resource-group RESOURCE_GROUP
Resource Group to use. If not specified, then
"default" group is used
--postgres POSTGRES Path to postgres credentials file for the datamart
database. If --postgres, --icd, and --db2 all are not
specified, then the internal Watson OpenScale database
is used
--icd ICD Path to IBM Cloud Database credentials file for the
datamart database
--db2 DB2 Path to IBM DB2 credentials file for the datamart
database
--deployment-name DEPLOYMENT_NAME
Name of the existing deployment to use. Required for
Azure ML Studio, SPSS Engine and Custom ML Engine, but
optional for Watson Machine Learning. Required for
custom models
--keep-schema Use pre-existing datamart schema, only dropping all
tables. If not specified, datamart schema is dropped
and re-created
--username USERNAME ICP username. Required if "icp" environment is chosen,
not required if --iam-token is specified
--password PASSWORD ICP password. Required if "icp" environment is chosen,
not required if --iam-token is specified
--url URL ICP url. Required if "icp" environment is chosen
--datamart-id DATAMART_ID
Specify data mart id. For icp environment, default is
"00000000-0000-0000-0000-000000000000"
--datamart-name DATAMART_NAME
Specify data mart name and database schema, default is
the datamart database connection username. For
internal database, the default is "wosfastpath"
--history HISTORY Days of history to preload. Default is 7
--history-only Store history only for existing deployment and
datamart. Requires --extend and --deployment-name also
be specified
--history-first-day HISTORY_FIRST_DAY
Starting day for history. Default is 0
--model MODEL Sample model to set up with Watson OpenScale (default
"GermanCreditRiskModel")
--list-models Lists all available models. If a ML engine is
specified, then modesl specific to that engine are
listed
--custom-model CUSTOM_MODEL
Name of custom model to set up with Watson OpenScale.
If specified, overrides the value set by --model. Also
requires that --custom-model-directory
--custom-model-directory CUSTOM_MODEL_DIRECTORY
Directory with model configuration and metadata files.
Also requires that --custom-model be specified
--extend Extend existing datamart, instead of deleting and
recreating it
--protect-datamart If specified, the setup will exit if an existing
datamart setup is found
--iam-integration Must be specified when running in a Cloud Pak for Data environment with iam_integration enabled.
--bedrock-url Must be specified when running in a Cloud Pak for Data environment with iam_integration enabled.
--reset {metrics,monitors,datamart,model,all}
Reset existing datamart and/or sample models then exit
--verbose verbose flag
--wml-plan {lite,standard,professional}
If no WML instance exists, then provision one with the
specified plan. Default is "lite", other plans are
paid plans
--openscale-plan {lite,standard}
If no OpenScale instance exists, then provision one
with the specified plan. Default is "lite", other
plans are paid plans
--version show program's version number and exit
--v4 Enable support for WML v4 python client
--generate-drift-history
Generate drift history with live execution instead of
loading from pre-generated history. Only needed for
backward compatiblity for GermanCreditRiskModel in
CP4D v2.1.0.2 (August 2019 GA)
required arguments (only one needed):
-a APIKEY, --apikey APIKEY
IBM Cloud platform user APIKey. If "--env icp" is also
specified, APIKey value is not used.
-i IAM_TOKEN, --iam-token IAM_TOKEN
IBM Cloud authentication IAM token, or IBM Cloud
private authentication IAM token. Format can be
(--iam-token "Bearer <token>") or (--iam-token
<token>)
```
## Examples
In this example, if a WML instance already exists it is used, but if not a new Lite plan instance is provisioned and used.
If an OpenScale instance exists, its datamart is dropped and recreated along with its datamart internal database schema.
Otherwise, a Lite plan OpenScale instance is provisioned.
The GermanCreditRiskModel is stored and deployed in WML, configured to OpenScale, and 7 days' historical data stored.
Then new feedback data is uploaded, 100 new live scoring predictions are made, followed by fairness, quality, drift, and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
ibm-watson-openscale-cli --apikey $APIKEY
```
In this example, assume the user already has provisioned instances of WML, OpenScale, IBM Cloud Database for Postgres (ICD), and has selected a schema for the OpenScale datamart database.
The OpenScale datamart is dropped and recreated, and the datamart's database schema is dropped and recreated.
An already-deployed instance of the DrugSelectionModel is configured to OpenScale, and 7 days' historical data stored,
followed by new feedback data upload, 100 new scores, fairness, quality, drift and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export WML=<path to WML instance credentials JSON file>
export ICD=<path to ICD instance credentials JSON file>
export SCHEMA=<ICD database schema name>
ibm-watson-openscale-cli --apikey $APIKEY --wml $WML --model DrugSelectionModel --deployment-name DrugSelectionModelDeployment --icd $ICD --datamart-name $SCHEMA
```
In this example, assume the user already has provisioned an Entry plan instance of IBM DB2 Warehouse on Cloud.
The OpenScale datamart's tables within the user's existing DB2 schema are dropped and recreated.
The GermanCreditRiskModel is stored and deployed in WML, configured to OpenScale, and 7 days' historical data stored,
followed by new feedback data upload, 100 new scores, fairness, quality, drift and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export DB2=<path to DB2 instance credentials JSON file>
export SCHEMA=<user's DB2 database schema>
ibm-watson-openscale-cli --apikey $APIKEY --db2 $DB2 --datamart-name $SCHEMA --keep-schema
```
In this example, assume the user has their own custom model named MyBusinessModel stored in WML and deployed as MyBusinessModelDeployment.
Also assume they already have a provisioned instance of OpenScale which has not yet been configured.
In the custom model directory, the user has provided a `configuration.json` file with the required model configuration details.
The OpenScale datamart and datamart database schema are created, and the MyBusinessModelDeployment is configured to OpenScale.
Then new feedback data is uploaded (if provided), 100 new scoring requests are made to the model, followed by fairness and quality checks (if configured), and one explanation.
```sh
export APIKEY=<IBM_CLOUD_API_KEY>
export WML=<path to WML instance credentials JSON file>
export MODELPATH=<path to custom model directory>
ibm-watson-openscale-cli --apikey $APIKEY --wml $WML --custom-model MyBusinessModel --deployment-name MyBusinessModelDeployment --custom-model-directory $MODELPATH
```
## FAQ
### Q: What is the GermanCreditRiskModel sample model?
A. The GermanCreditRiskModel sample model is taken from the "Watson Studio, Watson Machine Learning and Watson OpenScale samples"
[GitHub repo](https://github.com/IBM/watson-openscale-samples), specifically the IBM Watson OpenScale [tutorials](https://github.com/IBM/watson-openscale-samples).
When you run ibm-watson-openscale-cli to deploy and configure the GermanCreditRiskModel, the result will be as if you had run the tutorial notebook appropriate
for your machine learning engine.
### Q: What are the formats for the credentials files?
A: Each credential file has its own format:
Postgres
```
{
"uri": "postgres://<USERNAME>:<PASSWORD>@<HOSTNAME>:<PORT>/<DB>"
}
```
IBM Cloud Database for Postgres(ICD)
* Copy the Service Credentials from your ICD service instance in IBM Cloud
DB2
```
{
"username": "<USERNAME>",
"password": "<PASSWORD>",
"hostname": "<HOSTNAME>",
"port": "<PORT>",
"db": "<DB>"
}
```
### Q: How do the reset options work?
A: The reset options each affect a different level of data in the datamart:
* `--reset metrics` : Clean up the payload logging table, monitoring history tables etc, so that it restores the system to a fresh state with datamart configured, model deployments added, all monitors configured, but no actual metrics in the system yet. The system is ready to go. Not supported for Watson OpenScale internal databases.
* `--reset monitors` : Remove all configured monitors and corresponding metrics and history, but leave the actual model deployments (if any) in the datamart. User can proceed to configure the monitors via user interface, API, or ibm-watson-openscale-cli.
* `--reset datamart` : "Factory reset" the datamart to a fresh state as if there was not any configuration.
* `--reset model` : Delete the sample models and deployments from WML. Not yet supported for non-WML engines. Does not affect the datamart.
* `--reset all` : Reset both the datamart and sample models.
### Q: Can I use SSL for connecting to the datamart DB2 database?
A: Yes. The below options can be used for connecting to a DB2 with SSL:
1. DB2 Warehouse on Cloud databases automatically support SSL, using the VCAP json file generated on the "Service Credentials" page.
2. For on-prem or ICP4D DB2 databases:
1. You can specify the path on the local client machine to a copy of the DB2 server's SSL certificate "arm" file,
using an "ssldsn" connection string in the VCAP json file:
```
{
"hostname": "<ipaddr>",
"username": "<uid>",
"password": "<pw>",
"port": 50000,
"db": "<dbname>",
"ssldsn": "DATABASE=<dbname>;HOSTNAME=<ipaddr>;PORT=50001;PROTOCOL=TCPIP;UID=<uid>;PWD=<pw>;Security=ssl;SSLServerCertificate=/path_on_local_client_machine_to/db2server_instance.arm;"
}
```
2. You can specify the base64-encoded certificate as the `certificate_base64` attribute directly in the credentials along with a `ssl` attribute set to true, as below:
```
{
"hostname": "<ipaddr>",
"username": "<uid>",
"password": "<pw>",
"port": 50000,
"db": "<dbname>",
"ssl": true,
"certificate_base64":"Base64 encoded SSL certificate"
}
```
If SSL connections are not needed, or not configured on the DB2 server, you can remove the "ssldsn" tag and ibm-watson-openscale-cli will use the non-SSL "dsn" tag instead.
If the VCAP has both dsn and ssldsn tags, ibm-watson-openscale-cli will use "ssldsn" tag to create an SSL connection.
### Q: What are the contents of a custom model directory?
A: These files are used to configure a custom model to IBM Watson OpenScale:
Required
* `configuration.json`: the model configuration details
Optional
* `model_content.gzip`: exported model file from WML, to be loaded and deployed into WML if `--deployment-name` is not specified
* `model_meta.json`: exported model metadata from WML (required if model gzip is provided)
* `pipeline_content.gzip`: exported model pipeline file from WML, to be loaded and deployed into WML if `--deployment-name` is not specified
* `pipeline_meta.json`: exported model pipeline metadata from WML (required if pipeline gzip is provided)
* `drift_model.gzip`: exported model file from WML for a trained Drift model (required if drift configuration provided in configuration.json)
#### Syntax of configuration.json
A JSON file that specifies the OpenScale configuration for the model. The key components are:
* `asset_metadata` (required): top-level model specification elements
* `training_data_reference` (required): reference to the model training data csv in COS
* `training_data_type` (optional): required if there are any numeric-valued model features
* `quality_configuration` (optional): if applicable for the model
* `fairness_configuration` (optional): if applicable for the model
* `drift_configuration` (optional): if applicable for the model
Valid values for parameters in `asset_metadata`:
* `problem_type`: `REGRESSION`, `BINARY_CLASSIFICATION`, `MULTICLASS_CLASSIFICATION`
* `input_data_type`: `STRUCTURED`
Here is an example:
```
{
"asset_metadata": {
"problem_type": "BINARY_CLASSIFICATION",
"input_data_type": "STRUCTURED",
"label_column": "Risk",
"prediction_column": "Scored Labels",
"probability_column": "Scored Probabilities",
"categorical_columns": [ "CheckingStatus" ],
"feature_columns": [ "CheckingStatus", "LoanDuration", "Age" ]
},
"training_data_reference": {
"credentials" : {<IBM Cloud COS credentials>},
"path" : "<path within COS to training data csv file (bucket name + / + filename)>",
"firstlineheader": "True"
},
"training_data_type": { "LoanDuration": "int", "Age": "int" },
"quality_configuration": { "threshold": 0.95, "min_records": 40 },
"fairness_configuration": {
"features": [
{
"feature": "Age",
"majority": [[ 26, 75 ]],
"minority": [[ 18, 25 ]],
"threshold": 0.98
}
],
"favourable_classes": [ "No Risk" ],
"unfavourable_classes": [ "Risk" ],
"min_records": 100
},
"drift_configuration": {
"threshold": 0.15,
"min_records": 100
}
}
```
#### Syntax of `training_data.csv`
A CSV file of the data used to train the model.
This data is also used by live scoring requests to the model using the range of actual values for each feature from the training data.
A header row is required, with column names that match the model's feature names.
Any column with numeric values must be included in the `training_data_type` specification in the `configuration.json`.
A typical example:
```
CheckingStatus,LoanDuration,Age,Risk
no_checking,28,30,Risk
0_to_200,28,27,No Risk
. . .
```
## Python version
Tested on Python 3.6, 3.7, 3.8, 3.9.
## Troubleshooting
In some platforms if you're facing problems with the installation of the CLI tool, please use the following commands to install packages:
```
python -m pip install setuptools==50.3.2
python -m pip install psycopg2-binary
```
## Contributing
See [CONTRIBUTING.md][CONTRIBUTING].
## License
This library is licensed under the [Apache 2.0 license][license].
[ibm_cloud]: https://cloud.ibm.com
[responses]: https://github.com/getsentry/responses
[requests]: http://docs.python-requests.org/en/latest/
[CONTRIBUTING]: ./CONTRIBUTING.md
[license]: http://www.apache.org/licenses/LICENSE-2.0
%prep
%autosetup -n ibm-watson-openscale-cli-tool-3.5.51
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ibm-watson-openscale-cli-tool -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 3.5.51-1
- Package Spec generated
|