summaryrefslogtreecommitdiff
path: root/python-iminuit.spec
blob: 4056627629ce9c96fb46018cffddfbe68b924e14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%global _empty_manifest_terminate_build 0
Name:		python-iminuit
Version:	2.21.3
Release:	1
Summary:	Jupyter-friendly Python frontend for MINUIT2 in C++
License:	Minuit is from SEAL Minuit It's LGPL v2 http://seal.web.cern.ch/seal/main/license.html.  For iminuit, I'm releasing it as MIT license:  Copyright (c) 2012 Piti Ongmongkolkul  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.   Note: MIT license is GPL compatible, so it is an acceptable license for a wrapper, as can be seen here: http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#GPLWrapper http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#OrigBSD  (L)GPL can be combined or included in code that does not impose more restrictive conditions. 
URL:		https://pypi.org/project/iminuit/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/be/95/a2888ba5fdcea6736370ad2aa988d3c471daf6287bca534897c5c72351d3/iminuit-2.21.3.tar.gz

Requires:	python3-numpy
Requires:	python3-typing-extensions
Requires:	python3-sphinx
Requires:	python3-sphinx-rtd-theme
Requires:	python3-nbsphinx
Requires:	python3-nbconvert
Requires:	python3-nbformat
Requires:	python3-jupyter-client
Requires:	python3-ipykernel
Requires:	python3-jax
Requires:	python3-jaxlib
Requires:	python3-coverage
Requires:	python3-cython
Requires:	python3-ipywidgets
Requires:	python3-ipykernel
Requires:	python3-joblib
Requires:	python3-jacobi
Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-numba
Requires:	python3-numba-stats
Requires:	python3-pytest
Requires:	python3-scipy
Requires:	python3-tabulate
Requires:	python3-boost-histogram
Requires:	python3-resample

%description
*iminuit* is a Jupyter-friendly Python interface for the *Minuit2* C++ library maintained by CERN's ROOT team.
Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis.
- Supported CPython versions: 3.6+
- Supported PyPy versions: 3.6+
- Supported platforms: Linux, OSX and Windows.
The iminuit package comes with additional features:
- Builtin cost functions for statistical fits
  - Binned and unbinned maximum-likelihood
  - Non-linear regression with (optionally robust) weighted least-squares
  - Gaussian penalty terms
  - Cost functions can be combined by adding them: ``total_cost = cost_1 + cost_2``
- Support for SciPy minimisers as alternatives to Minuit's Migrad algorithm (optional)
- Support for Numba accelerated functions (optional)

%package -n python3-iminuit
Summary:	Jupyter-friendly Python frontend for MINUIT2 in C++
Provides:	python-iminuit
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-iminuit
*iminuit* is a Jupyter-friendly Python interface for the *Minuit2* C++ library maintained by CERN's ROOT team.
Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis.
- Supported CPython versions: 3.6+
- Supported PyPy versions: 3.6+
- Supported platforms: Linux, OSX and Windows.
The iminuit package comes with additional features:
- Builtin cost functions for statistical fits
  - Binned and unbinned maximum-likelihood
  - Non-linear regression with (optionally robust) weighted least-squares
  - Gaussian penalty terms
  - Cost functions can be combined by adding them: ``total_cost = cost_1 + cost_2``
- Support for SciPy minimisers as alternatives to Minuit's Migrad algorithm (optional)
- Support for Numba accelerated functions (optional)

%package help
Summary:	Development documents and examples for iminuit
Provides:	python3-iminuit-doc
%description help
*iminuit* is a Jupyter-friendly Python interface for the *Minuit2* C++ library maintained by CERN's ROOT team.
Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis.
- Supported CPython versions: 3.6+
- Supported PyPy versions: 3.6+
- Supported platforms: Linux, OSX and Windows.
The iminuit package comes with additional features:
- Builtin cost functions for statistical fits
  - Binned and unbinned maximum-likelihood
  - Non-linear regression with (optionally robust) weighted least-squares
  - Gaussian penalty terms
  - Cost functions can be combined by adding them: ``total_cost = cost_1 + cost_2``
- Support for SciPy minimisers as alternatives to Minuit's Migrad algorithm (optional)
- Support for Numba accelerated functions (optional)

%prep
%autosetup -n iminuit-2.21.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-iminuit -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 2.21.3-1
- Package Spec generated