summaryrefslogtreecommitdiff
path: root/python-info-gain.spec
blob: 6a7994e3afd3f554973fdcf152a92cf5248e320c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
%global _empty_manifest_terminate_build 0
Name:		python-info-gain
Version:	1.0.1
Release:	1
Summary:	Information gain utilities
License:	MIT License
URL:		https://github.com/Thijsvanede/info_gain
Source0:	https://mirrors.aliyun.com/pypi/web/packages/74/da/b7ac47b517b47ca3f0bcf87a8ed3f17c2b1978c4df9f000e0ac577b2106e/info_gain-1.0.1.tar.gz
BuildArch:	noarch


%description
# info_gain
Implementation of information gain algorithm. There seems to be a debate about how the information gain metric is defined. Whether to use the [Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence) or the [Mutual information](https://en.wikipedia.org/wiki/Mutual_information) as an algorithm to define information gain. This implementation uses the [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) as defined below:

## Information gain definitions
### Information gain calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).
Let `Attr` be the set of all attributes and `Ex` the set of all training examples, `value(x, a)` with `x` in `Ex` defines the value of a specific example `x` for attribute `a` in `Attr`, `H` specifies the entropy. The `values(a)` function denotes the set of all possible values of attribute `a` in `Attr`. The information gain for an attribute `a` in `Attr` is defined as follows:

![Information gain formula][ig]

[ig]: https://github.com/Thijsvanede/info_gain/blob/master/images/information_gain_formula.gif

### Intrinsic value calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).

![Intrinsic value calculation][iv]

[iv]: https://github.com/Thijsvanede/info_gain/blob/master/images/intrinsic_value_formula.gif

### Information gain ratio calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).

![Intrinsic value calculation][igr]

[igr]: https://github.com/Thijsvanede/info_gain/blob/master/images/information_gain_ratio_formula.gif

## Installation
To install the package via pip use:
```
pip install info_gain
```

To clone the package from the git repository use:
```
git clone https://github.com/Thijsvanede/info_gain.git
```

## Usage
Import the `info_gain` module with:
```
from info_gain import info_gain
```
The imported module has supports three methods:
 * `info_gain.info_gain(Ex, a)` to compute the information gain.
 * `info_gain.intrinsic_value(Ex, a)` to compute the intrinsic value.
 * `info_gain.info_gain_ratio(Ex, a)` to compute the information gain ratio.

### Example
```python
from info_gain import info_gain

# Example of color to indicate whether something is fruit or vegatable
produce = ['apple', 'apple', 'apple', 'strawberry', 'eggplant']
fruit   = [ True  ,  True  ,  True  ,  True       ,  False    ]
colour  = ['green', 'green', 'red'  , 'red'       , 'purple'  ]

ig  = info_gain.info_gain(fruit, colour)
iv  = info_gain.intrinsic_value(fruit, colour)
igr = info_gain.info_gain_ratio(fruit, colour)

print(ig, iv, igr)
```




%package -n python3-info-gain
Summary:	Information gain utilities
Provides:	python-info-gain
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-info-gain
# info_gain
Implementation of information gain algorithm. There seems to be a debate about how the information gain metric is defined. Whether to use the [Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence) or the [Mutual information](https://en.wikipedia.org/wiki/Mutual_information) as an algorithm to define information gain. This implementation uses the [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) as defined below:

## Information gain definitions
### Information gain calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).
Let `Attr` be the set of all attributes and `Ex` the set of all training examples, `value(x, a)` with `x` in `Ex` defines the value of a specific example `x` for attribute `a` in `Attr`, `H` specifies the entropy. The `values(a)` function denotes the set of all possible values of attribute `a` in `Attr`. The information gain for an attribute `a` in `Attr` is defined as follows:

![Information gain formula][ig]

[ig]: https://github.com/Thijsvanede/info_gain/blob/master/images/information_gain_formula.gif

### Intrinsic value calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).

![Intrinsic value calculation][iv]

[iv]: https://github.com/Thijsvanede/info_gain/blob/master/images/intrinsic_value_formula.gif

### Information gain ratio calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).

![Intrinsic value calculation][igr]

[igr]: https://github.com/Thijsvanede/info_gain/blob/master/images/information_gain_ratio_formula.gif

## Installation
To install the package via pip use:
```
pip install info_gain
```

To clone the package from the git repository use:
```
git clone https://github.com/Thijsvanede/info_gain.git
```

## Usage
Import the `info_gain` module with:
```
from info_gain import info_gain
```
The imported module has supports three methods:
 * `info_gain.info_gain(Ex, a)` to compute the information gain.
 * `info_gain.intrinsic_value(Ex, a)` to compute the intrinsic value.
 * `info_gain.info_gain_ratio(Ex, a)` to compute the information gain ratio.

### Example
```python
from info_gain import info_gain

# Example of color to indicate whether something is fruit or vegatable
produce = ['apple', 'apple', 'apple', 'strawberry', 'eggplant']
fruit   = [ True  ,  True  ,  True  ,  True       ,  False    ]
colour  = ['green', 'green', 'red'  , 'red'       , 'purple'  ]

ig  = info_gain.info_gain(fruit, colour)
iv  = info_gain.intrinsic_value(fruit, colour)
igr = info_gain.info_gain_ratio(fruit, colour)

print(ig, iv, igr)
```




%package help
Summary:	Development documents and examples for info-gain
Provides:	python3-info-gain-doc
%description help
# info_gain
Implementation of information gain algorithm. There seems to be a debate about how the information gain metric is defined. Whether to use the [Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence) or the [Mutual information](https://en.wikipedia.org/wiki/Mutual_information) as an algorithm to define information gain. This implementation uses the [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) as defined below:

## Information gain definitions
### Information gain calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).
Let `Attr` be the set of all attributes and `Ex` the set of all training examples, `value(x, a)` with `x` in `Ex` defines the value of a specific example `x` for attribute `a` in `Attr`, `H` specifies the entropy. The `values(a)` function denotes the set of all possible values of attribute `a` in `Attr`. The information gain for an attribute `a` in `Attr` is defined as follows:

![Information gain formula][ig]

[ig]: https://github.com/Thijsvanede/info_gain/blob/master/images/information_gain_formula.gif

### Intrinsic value calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).

![Intrinsic value calculation][iv]

[iv]: https://github.com/Thijsvanede/info_gain/blob/master/images/intrinsic_value_formula.gif

### Information gain ratio calculation
Definition from [information gain calculation](https://en.wikipedia.org/wiki/Information_gain_ratio) (retrieved 2018-07-13).

![Intrinsic value calculation][igr]

[igr]: https://github.com/Thijsvanede/info_gain/blob/master/images/information_gain_ratio_formula.gif

## Installation
To install the package via pip use:
```
pip install info_gain
```

To clone the package from the git repository use:
```
git clone https://github.com/Thijsvanede/info_gain.git
```

## Usage
Import the `info_gain` module with:
```
from info_gain import info_gain
```
The imported module has supports three methods:
 * `info_gain.info_gain(Ex, a)` to compute the information gain.
 * `info_gain.intrinsic_value(Ex, a)` to compute the intrinsic value.
 * `info_gain.info_gain_ratio(Ex, a)` to compute the information gain ratio.

### Example
```python
from info_gain import info_gain

# Example of color to indicate whether something is fruit or vegatable
produce = ['apple', 'apple', 'apple', 'strawberry', 'eggplant']
fruit   = [ True  ,  True  ,  True  ,  True       ,  False    ]
colour  = ['green', 'green', 'red'  , 'red'       , 'purple'  ]

ig  = info_gain.info_gain(fruit, colour)
iv  = info_gain.intrinsic_value(fruit, colour)
igr = info_gain.info_gain_ratio(fruit, colour)

print(ig, iv, igr)
```




%prep
%autosetup -n info_gain-1.0.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-info-gain -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.1-1
- Package Spec generated