summaryrefslogtreecommitdiff
path: root/python-inkstone.spec
blob: 444da71409e0b63142d417f08bdcdf911d984dfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
%global _empty_manifest_terminate_build 0
Name:		python-inkstone
Version:	0.2.11
Release:	1
Summary:	3D efficient solver for multi-stacked in-plane periodic structures using rcwa.
License:	GNU Affero General Public License v3 or later (AGPLv3+)
URL:		https://github.com/alexysong/inkstone
Source0:	https://mirrors.aliyun.com/pypi/web/packages/4c/c3/4d3484e74f99d39c250ff1433f318053478de206a4d9e72f5351294e324b/inkstone-0.2.11.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy

%description
<img src="https://github.com/alexysong/inkstone/blob/main/figs/logo.png" align="middle" alt="logo" width="250">

**Inkstone** simulates the electromagnetic properties of 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, vertical-cavity or photonic-crystal surface-emitting lasers (VCSEL, PCSEL), (patterned) solar cells, nano-antennas, and more.

Internally, Inkstone implements rigorous coupled-wave analysis (RCWA), a. k. a. Fourier Modal Method (FMM). 

### Inkstone can calculate: 
* the reflection, transmission, and absorption of the structure
* the total and by-order power fluxes of the propagating and the evanescent waves in each layer
* electric and magnetic field amplitudes at any locations in the structure,
* band-structures based on the determinant of the scattering matrix of the structure.

### Features of Inkstone:
* It supports efficient and flexible parameter-scanning. You can change part of your structure such as the shapes and sizes of some patterns, or some material parameters. Inkstone only recalculates the modified parts and produces the final results efficiently.
* It allows both tensorial permittivities and tensorial permeabilities, such as in anisotropic, magneto-optical, or gyromagnetic materials. 
* It can calculate the determinant of the scattering matrix on the complex frequency plane. 
* Pre-defined shapes of patterns can be used, including rectangular, parallelogram, disk, ellipse, 1D, and polygons. Closed-form Fourier transforms and corrections for Gibbs phenomena are implemented. 
* It is fully 3D.
* It is written in pure python, with heavy-lifting done in numpy and scipy.


## Quick Start
### Installation:

    $ pip install inkstone
Or,

    $ git clone git://github.com/alexysong/inkstone
    $ pip install .

### Usage

The [examples](examples/) folder contains various self-explaining examples to get you started.

## Dependencies

*   python 3.6+
*   numpy
*   scipy

## Units, conventions, and definitions

### Unit system
We adopt a natural unit system, where vacuum permittivity, permeability, and light speed are $\varepsilon_0=\mu_0=c_0=1$.

### Sign convention
Sign conventions in electromagnetic waves:

$$e^{i(kx-\omega t)}$$

where $k$ is the wavevector, $x$ is spatial location, $\omega$ is frequency, $t$ is time.

By this convention, a permittivity of $\varepsilon_r + i\varepsilon_i$ with $\varepsilon_i>0$ means material loss, and $\varepsilon_i<0$ means material gain.

### Coordinates and incident angles

<img src="https://github.com/alexysong/inkstone/blob/main/figs/PhC_slab_vector_incident.svg" alt="drawing" width="300">

(Inkstone, **In**cident $\bm{k}$ on **st**acked peri**o**dic **n**ano **e**lectromagnetic structures.)

## Citing
If you find Inkstone useful for your research, we would apprecite you citing our [paper](https://doi.org/10.1103/PhysRevLett.120.193903). For your convenience, you can use the following BibTex entry:

    @article{song2018broadband,
      title={Broadband Control of Topological Nodes in Electromagnetic Fields},
      author={Song, Alex Y and Catrysse, Peter B and Fan, Shanhui},
      journal={Physical review letters},
      volume={120},
      number={19},
      pages={193903},
      year={2018},
      publisher={American Physical Society}
    }






%package -n python3-inkstone
Summary:	3D efficient solver for multi-stacked in-plane periodic structures using rcwa.
Provides:	python-inkstone
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-inkstone
<img src="https://github.com/alexysong/inkstone/blob/main/figs/logo.png" align="middle" alt="logo" width="250">

**Inkstone** simulates the electromagnetic properties of 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, vertical-cavity or photonic-crystal surface-emitting lasers (VCSEL, PCSEL), (patterned) solar cells, nano-antennas, and more.

Internally, Inkstone implements rigorous coupled-wave analysis (RCWA), a. k. a. Fourier Modal Method (FMM). 

### Inkstone can calculate: 
* the reflection, transmission, and absorption of the structure
* the total and by-order power fluxes of the propagating and the evanescent waves in each layer
* electric and magnetic field amplitudes at any locations in the structure,
* band-structures based on the determinant of the scattering matrix of the structure.

### Features of Inkstone:
* It supports efficient and flexible parameter-scanning. You can change part of your structure such as the shapes and sizes of some patterns, or some material parameters. Inkstone only recalculates the modified parts and produces the final results efficiently.
* It allows both tensorial permittivities and tensorial permeabilities, such as in anisotropic, magneto-optical, or gyromagnetic materials. 
* It can calculate the determinant of the scattering matrix on the complex frequency plane. 
* Pre-defined shapes of patterns can be used, including rectangular, parallelogram, disk, ellipse, 1D, and polygons. Closed-form Fourier transforms and corrections for Gibbs phenomena are implemented. 
* It is fully 3D.
* It is written in pure python, with heavy-lifting done in numpy and scipy.


## Quick Start
### Installation:

    $ pip install inkstone
Or,

    $ git clone git://github.com/alexysong/inkstone
    $ pip install .

### Usage

The [examples](examples/) folder contains various self-explaining examples to get you started.

## Dependencies

*   python 3.6+
*   numpy
*   scipy

## Units, conventions, and definitions

### Unit system
We adopt a natural unit system, where vacuum permittivity, permeability, and light speed are $\varepsilon_0=\mu_0=c_0=1$.

### Sign convention
Sign conventions in electromagnetic waves:

$$e^{i(kx-\omega t)}$$

where $k$ is the wavevector, $x$ is spatial location, $\omega$ is frequency, $t$ is time.

By this convention, a permittivity of $\varepsilon_r + i\varepsilon_i$ with $\varepsilon_i>0$ means material loss, and $\varepsilon_i<0$ means material gain.

### Coordinates and incident angles

<img src="https://github.com/alexysong/inkstone/blob/main/figs/PhC_slab_vector_incident.svg" alt="drawing" width="300">

(Inkstone, **In**cident $\bm{k}$ on **st**acked peri**o**dic **n**ano **e**lectromagnetic structures.)

## Citing
If you find Inkstone useful for your research, we would apprecite you citing our [paper](https://doi.org/10.1103/PhysRevLett.120.193903). For your convenience, you can use the following BibTex entry:

    @article{song2018broadband,
      title={Broadband Control of Topological Nodes in Electromagnetic Fields},
      author={Song, Alex Y and Catrysse, Peter B and Fan, Shanhui},
      journal={Physical review letters},
      volume={120},
      number={19},
      pages={193903},
      year={2018},
      publisher={American Physical Society}
    }






%package help
Summary:	Development documents and examples for inkstone
Provides:	python3-inkstone-doc
%description help
<img src="https://github.com/alexysong/inkstone/blob/main/figs/logo.png" align="middle" alt="logo" width="250">

**Inkstone** simulates the electromagnetic properties of 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, vertical-cavity or photonic-crystal surface-emitting lasers (VCSEL, PCSEL), (patterned) solar cells, nano-antennas, and more.

Internally, Inkstone implements rigorous coupled-wave analysis (RCWA), a. k. a. Fourier Modal Method (FMM). 

### Inkstone can calculate: 
* the reflection, transmission, and absorption of the structure
* the total and by-order power fluxes of the propagating and the evanescent waves in each layer
* electric and magnetic field amplitudes at any locations in the structure,
* band-structures based on the determinant of the scattering matrix of the structure.

### Features of Inkstone:
* It supports efficient and flexible parameter-scanning. You can change part of your structure such as the shapes and sizes of some patterns, or some material parameters. Inkstone only recalculates the modified parts and produces the final results efficiently.
* It allows both tensorial permittivities and tensorial permeabilities, such as in anisotropic, magneto-optical, or gyromagnetic materials. 
* It can calculate the determinant of the scattering matrix on the complex frequency plane. 
* Pre-defined shapes of patterns can be used, including rectangular, parallelogram, disk, ellipse, 1D, and polygons. Closed-form Fourier transforms and corrections for Gibbs phenomena are implemented. 
* It is fully 3D.
* It is written in pure python, with heavy-lifting done in numpy and scipy.


## Quick Start
### Installation:

    $ pip install inkstone
Or,

    $ git clone git://github.com/alexysong/inkstone
    $ pip install .

### Usage

The [examples](examples/) folder contains various self-explaining examples to get you started.

## Dependencies

*   python 3.6+
*   numpy
*   scipy

## Units, conventions, and definitions

### Unit system
We adopt a natural unit system, where vacuum permittivity, permeability, and light speed are $\varepsilon_0=\mu_0=c_0=1$.

### Sign convention
Sign conventions in electromagnetic waves:

$$e^{i(kx-\omega t)}$$

where $k$ is the wavevector, $x$ is spatial location, $\omega$ is frequency, $t$ is time.

By this convention, a permittivity of $\varepsilon_r + i\varepsilon_i$ with $\varepsilon_i>0$ means material loss, and $\varepsilon_i<0$ means material gain.

### Coordinates and incident angles

<img src="https://github.com/alexysong/inkstone/blob/main/figs/PhC_slab_vector_incident.svg" alt="drawing" width="300">

(Inkstone, **In**cident $\bm{k}$ on **st**acked peri**o**dic **n**ano **e**lectromagnetic structures.)

## Citing
If you find Inkstone useful for your research, we would apprecite you citing our [paper](https://doi.org/10.1103/PhysRevLett.120.193903). For your convenience, you can use the following BibTex entry:

    @article{song2018broadband,
      title={Broadband Control of Topological Nodes in Electromagnetic Fields},
      author={Song, Alex Y and Catrysse, Peter B and Fan, Shanhui},
      journal={Physical review letters},
      volume={120},
      number={19},
      pages={193903},
      year={2018},
      publisher={American Physical Society}
    }






%prep
%autosetup -n inkstone-0.2.11

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-inkstone -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.11-1
- Package Spec generated