summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-05 05:15:55 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-05 05:15:55 +0000
commit80e97902d4163bf9064382bbb1ec7411f7c7e377 (patch)
tree8323f575f8f382e1e6bf90dce22b2bb7c13a29c2
parentf396e89c362647ce219288a6891c513877de646f (diff)
automatic import of python-iohopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-ioh.spec312
-rw-r--r--sources1
3 files changed, 314 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..43e3f85 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/ioh-0.3.9.tar.gz
diff --git a/python-ioh.spec b/python-ioh.spec
new file mode 100644
index 0000000..f2eb51a
--- /dev/null
+++ b/python-ioh.spec
@@ -0,0 +1,312 @@
+%global _empty_manifest_terminate_build 0
+Name: python-ioh
+Version: 0.3.9
+Release: 1
+Summary: The experimenter for Iterative Optimization Heuristics
+License: BSD
+URL: https://iohprofiler.github.io/IOHexperimenter
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/80/d9/31320b3dcc2984a17b28202682a03a2ba5e780e93fdb0c247dc260b5d035/ioh-0.3.9.tar.gz
+
+Requires: python3-numpy
+
+%description
+# IOHexperimenter
+
+![Ubuntu g++-{10, 9, 8}](https://github.com/IOHprofiler/IOHexperimenter/workflows/Ubuntu/badge.svg)
+![MacOS clang++, g++-{9, 8}](https://github.com/IOHprofiler/IOHexperimenter/workflows/MacOS/badge.svg)
+![Windows MVSC-2019](https://github.com/IOHprofiler/IOHexperimenter/workflows/Windows/badge.svg)
+
+**Experimenter** for **I**terative **O**ptimization **H**euristics (IOHs), built in* `C++`.
+
+* **Documentation**: [https://iohprofiler.github.io/IOHexperimenter](https://iohprofiler.github.io/IOHexperimenter).
+* **Publication**: [https://arxiv.org/abs/1810.05281](https://arxiv.org/abs/1810.05281).
+* **Wiki page**: [https://iohprofiler.github.io](https://iohprofiler.github.io/).
+
+**IOHexperimenter** *provides*:
+
+* A framework to ease the benchmarking of any iterative optimization heuristic.
+* [Pseudo-Boolean Optimization (PBO)](https://iohprofiler.github.io/IOHproblem/) problem set (25 pseudo-Boolean problems).
+* Integration of the well-known [Black-black Optimization Benchmarking (BBOB)](https://github.com/numbbo/coco) problem set (24 continuous problems).
+* [W-model](https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw) problem sets constructed on OneMax and LeadingOnes.
+* Integration of the [Tree Decomposition (TD) Mk Landscapes](https://github.com/tobiasvandriessel/problem-generator) problems.
+* Submodular optimization problems, as seen in the [GECCO '22 workshop](https://cs.adelaide.edu.au/~optlog/CompetitionESO2022.php).
+* Flexible interface for adding new suites and problems.
+* Advanced logging module that takes care of registering the data in a seamless manner.
+* Data format is compatible with [IOHanalyzer](https://github.com/IOHprofiler/IOHanalyzer).
+
+**Available Problem Suites:**
+
+* BBOB (Single Objective Noiseless) (COCO)
+* SBOX-COST (COCO)
+* StarDiscrepancy
+* PBO
+* Submodular Graph Problems
+
+## C++
+
+The complete API documentation, can be found [here](https://iohprofiler.github.io/IOHexperimenter/cpp), as well as a Getting-Started guide. In addition to the documentation, some example projects can be found in the [example](./example/) folder of this repository.
+
+## Python
+
+The pip-version of IOHexperimenters python interface is available via [pip](https://pypi.org/project/ioh). A tutorial with python in the form of a jupyter notebook can be found in the example folder of [this repository](./example/tutorial.ipynb).
+A Getting-Started guide and the full API documentation can be found [here](https://iohprofiler.github.io/IOHexperimenter/python).
+
+## Contact
+
+If you have any questions, comments or suggestions, please don't hesitate contacting us <IOHprofiler@liacs.leidenuniv.nl>.
+
+### Our team
+
+* [Jacob de Nobel](https://www.universiteitleiden.nl/en/staffmembers/jacob-de-nobel), *Leiden Institute of Advanced Computer Science*,
+* [Furong Ye](https://www.universiteitleiden.nl/en/staffmembers/furong-ye#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Diederick Vermetten](https://www.universiteitleiden.nl/en/staffmembers/diederick-vermetten#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Hao Wang](https://www.universiteitleiden.nl/en/staffmembers/hao-wang#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Carola Doerr](http://www-desir.lip6.fr/~doerr/), *CNRS and Sorbonne University*,
+* [Thomas Bäck](https://www.universiteitleiden.nl/en/staffmembers/thomas-back#tab-1), *Leiden Institute of Advanced Computer Science*,
+
+When using IOHprofiler and parts thereof, please kindly cite this work as
+
+Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr and Thomas Bäck,
+*IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics*, arXiv e-prints:2111.04077, 2021.
+
+```bibtex
+@ARTICLE{IOHexperimenter,
+ author = {Jacob de Nobel and
+ Furong Ye and
+ Diederick Vermetten and
+ Hao Wang and
+ Carola Doerr and
+ Thomas B{\"{a}}ck},
+ title = {{IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics}},
+ journal = {arXiv e-prints:2111.04077},
+ archivePrefix = "arXiv",
+ eprint = {2111.04077},
+ year = 2021,
+ month = Nov,
+ keywords = {Computer Science - Neural and Evolutionary Computing},
+ url = {https://arxiv.org/abs/2111.04077}
+}
+```
+
+
+
+
+%package -n python3-ioh
+Summary: The experimenter for Iterative Optimization Heuristics
+Provides: python-ioh
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+BuildRequires: python3-cffi
+BuildRequires: gcc
+BuildRequires: gdb
+%description -n python3-ioh
+# IOHexperimenter
+
+![Ubuntu g++-{10, 9, 8}](https://github.com/IOHprofiler/IOHexperimenter/workflows/Ubuntu/badge.svg)
+![MacOS clang++, g++-{9, 8}](https://github.com/IOHprofiler/IOHexperimenter/workflows/MacOS/badge.svg)
+![Windows MVSC-2019](https://github.com/IOHprofiler/IOHexperimenter/workflows/Windows/badge.svg)
+
+**Experimenter** for **I**terative **O**ptimization **H**euristics (IOHs), built in* `C++`.
+
+* **Documentation**: [https://iohprofiler.github.io/IOHexperimenter](https://iohprofiler.github.io/IOHexperimenter).
+* **Publication**: [https://arxiv.org/abs/1810.05281](https://arxiv.org/abs/1810.05281).
+* **Wiki page**: [https://iohprofiler.github.io](https://iohprofiler.github.io/).
+
+**IOHexperimenter** *provides*:
+
+* A framework to ease the benchmarking of any iterative optimization heuristic.
+* [Pseudo-Boolean Optimization (PBO)](https://iohprofiler.github.io/IOHproblem/) problem set (25 pseudo-Boolean problems).
+* Integration of the well-known [Black-black Optimization Benchmarking (BBOB)](https://github.com/numbbo/coco) problem set (24 continuous problems).
+* [W-model](https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw) problem sets constructed on OneMax and LeadingOnes.
+* Integration of the [Tree Decomposition (TD) Mk Landscapes](https://github.com/tobiasvandriessel/problem-generator) problems.
+* Submodular optimization problems, as seen in the [GECCO '22 workshop](https://cs.adelaide.edu.au/~optlog/CompetitionESO2022.php).
+* Flexible interface for adding new suites and problems.
+* Advanced logging module that takes care of registering the data in a seamless manner.
+* Data format is compatible with [IOHanalyzer](https://github.com/IOHprofiler/IOHanalyzer).
+
+**Available Problem Suites:**
+
+* BBOB (Single Objective Noiseless) (COCO)
+* SBOX-COST (COCO)
+* StarDiscrepancy
+* PBO
+* Submodular Graph Problems
+
+## C++
+
+The complete API documentation, can be found [here](https://iohprofiler.github.io/IOHexperimenter/cpp), as well as a Getting-Started guide. In addition to the documentation, some example projects can be found in the [example](./example/) folder of this repository.
+
+## Python
+
+The pip-version of IOHexperimenters python interface is available via [pip](https://pypi.org/project/ioh). A tutorial with python in the form of a jupyter notebook can be found in the example folder of [this repository](./example/tutorial.ipynb).
+A Getting-Started guide and the full API documentation can be found [here](https://iohprofiler.github.io/IOHexperimenter/python).
+
+## Contact
+
+If you have any questions, comments or suggestions, please don't hesitate contacting us <IOHprofiler@liacs.leidenuniv.nl>.
+
+### Our team
+
+* [Jacob de Nobel](https://www.universiteitleiden.nl/en/staffmembers/jacob-de-nobel), *Leiden Institute of Advanced Computer Science*,
+* [Furong Ye](https://www.universiteitleiden.nl/en/staffmembers/furong-ye#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Diederick Vermetten](https://www.universiteitleiden.nl/en/staffmembers/diederick-vermetten#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Hao Wang](https://www.universiteitleiden.nl/en/staffmembers/hao-wang#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Carola Doerr](http://www-desir.lip6.fr/~doerr/), *CNRS and Sorbonne University*,
+* [Thomas Bäck](https://www.universiteitleiden.nl/en/staffmembers/thomas-back#tab-1), *Leiden Institute of Advanced Computer Science*,
+
+When using IOHprofiler and parts thereof, please kindly cite this work as
+
+Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr and Thomas Bäck,
+*IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics*, arXiv e-prints:2111.04077, 2021.
+
+```bibtex
+@ARTICLE{IOHexperimenter,
+ author = {Jacob de Nobel and
+ Furong Ye and
+ Diederick Vermetten and
+ Hao Wang and
+ Carola Doerr and
+ Thomas B{\"{a}}ck},
+ title = {{IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics}},
+ journal = {arXiv e-prints:2111.04077},
+ archivePrefix = "arXiv",
+ eprint = {2111.04077},
+ year = 2021,
+ month = Nov,
+ keywords = {Computer Science - Neural and Evolutionary Computing},
+ url = {https://arxiv.org/abs/2111.04077}
+}
+```
+
+
+
+
+%package help
+Summary: Development documents and examples for ioh
+Provides: python3-ioh-doc
+%description help
+# IOHexperimenter
+
+![Ubuntu g++-{10, 9, 8}](https://github.com/IOHprofiler/IOHexperimenter/workflows/Ubuntu/badge.svg)
+![MacOS clang++, g++-{9, 8}](https://github.com/IOHprofiler/IOHexperimenter/workflows/MacOS/badge.svg)
+![Windows MVSC-2019](https://github.com/IOHprofiler/IOHexperimenter/workflows/Windows/badge.svg)
+
+**Experimenter** for **I**terative **O**ptimization **H**euristics (IOHs), built in* `C++`.
+
+* **Documentation**: [https://iohprofiler.github.io/IOHexperimenter](https://iohprofiler.github.io/IOHexperimenter).
+* **Publication**: [https://arxiv.org/abs/1810.05281](https://arxiv.org/abs/1810.05281).
+* **Wiki page**: [https://iohprofiler.github.io](https://iohprofiler.github.io/).
+
+**IOHexperimenter** *provides*:
+
+* A framework to ease the benchmarking of any iterative optimization heuristic.
+* [Pseudo-Boolean Optimization (PBO)](https://iohprofiler.github.io/IOHproblem/) problem set (25 pseudo-Boolean problems).
+* Integration of the well-known [Black-black Optimization Benchmarking (BBOB)](https://github.com/numbbo/coco) problem set (24 continuous problems).
+* [W-model](https://dl.acm.org/doi/abs/10.1145/3205651.3208240?casa_token=S4U_Pi9f6MwAAAAA:U9ztNTPwmupT8K3GamWZfBL7-8fqjxPtr_kprv51vdwA-REsp0EyOFGa99BtbANb0XbqyrVg795hIw) problem sets constructed on OneMax and LeadingOnes.
+* Integration of the [Tree Decomposition (TD) Mk Landscapes](https://github.com/tobiasvandriessel/problem-generator) problems.
+* Submodular optimization problems, as seen in the [GECCO '22 workshop](https://cs.adelaide.edu.au/~optlog/CompetitionESO2022.php).
+* Flexible interface for adding new suites and problems.
+* Advanced logging module that takes care of registering the data in a seamless manner.
+* Data format is compatible with [IOHanalyzer](https://github.com/IOHprofiler/IOHanalyzer).
+
+**Available Problem Suites:**
+
+* BBOB (Single Objective Noiseless) (COCO)
+* SBOX-COST (COCO)
+* StarDiscrepancy
+* PBO
+* Submodular Graph Problems
+
+## C++
+
+The complete API documentation, can be found [here](https://iohprofiler.github.io/IOHexperimenter/cpp), as well as a Getting-Started guide. In addition to the documentation, some example projects can be found in the [example](./example/) folder of this repository.
+
+## Python
+
+The pip-version of IOHexperimenters python interface is available via [pip](https://pypi.org/project/ioh). A tutorial with python in the form of a jupyter notebook can be found in the example folder of [this repository](./example/tutorial.ipynb).
+A Getting-Started guide and the full API documentation can be found [here](https://iohprofiler.github.io/IOHexperimenter/python).
+
+## Contact
+
+If you have any questions, comments or suggestions, please don't hesitate contacting us <IOHprofiler@liacs.leidenuniv.nl>.
+
+### Our team
+
+* [Jacob de Nobel](https://www.universiteitleiden.nl/en/staffmembers/jacob-de-nobel), *Leiden Institute of Advanced Computer Science*,
+* [Furong Ye](https://www.universiteitleiden.nl/en/staffmembers/furong-ye#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Diederick Vermetten](https://www.universiteitleiden.nl/en/staffmembers/diederick-vermetten#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Hao Wang](https://www.universiteitleiden.nl/en/staffmembers/hao-wang#tab-1), *Leiden Institute of Advanced Computer Science*,
+* [Carola Doerr](http://www-desir.lip6.fr/~doerr/), *CNRS and Sorbonne University*,
+* [Thomas Bäck](https://www.universiteitleiden.nl/en/staffmembers/thomas-back#tab-1), *Leiden Institute of Advanced Computer Science*,
+
+When using IOHprofiler and parts thereof, please kindly cite this work as
+
+Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr and Thomas Bäck,
+*IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics*, arXiv e-prints:2111.04077, 2021.
+
+```bibtex
+@ARTICLE{IOHexperimenter,
+ author = {Jacob de Nobel and
+ Furong Ye and
+ Diederick Vermetten and
+ Hao Wang and
+ Carola Doerr and
+ Thomas B{\"{a}}ck},
+ title = {{IOHexperimenter: Benchmarking Platform for Iterative Optimization Heuristics}},
+ journal = {arXiv e-prints:2111.04077},
+ archivePrefix = "arXiv",
+ eprint = {2111.04077},
+ year = 2021,
+ month = Nov,
+ keywords = {Computer Science - Neural and Evolutionary Computing},
+ url = {https://arxiv.org/abs/2111.04077}
+}
+```
+
+
+
+
+%prep
+%autosetup -n ioh-0.3.9
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-ioh -f filelist.lst
+%dir %{python3_sitearch}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.9-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..ad47138
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+77af6a4bdd989bafbd289cfe57536b47 ioh-0.3.9.tar.gz