summaryrefslogtreecommitdiff
path: root/python-jax-finufft.spec
blob: 50375803064cbf5f685316c0b03fbf53892876cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
%global _empty_manifest_terminate_build 0
Name:		python-jax-finufft
Version:	0.0.3
Release:	1
Summary:	Unofficial JAX bindings for finufft
License:	MIT
URL:		https://github.com/dfm/jax-finufft
Source0:	https://mirrors.aliyun.com/pypi/web/packages/a5/7f/b511040193939f6cf1ae426796ad4338728638ce86bf60743027264ab320/jax-finufft-0.0.3.tar.gz
BuildArch:	noarch

Requires:	python3-jax
Requires:	python3-jaxlib
Requires:	python3-pytest

%description
# JAX bindings to FINUFFT

This package provides a [JAX](https://github.com/google/jax) interface to (a
subset of) the [Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT)
library](https://github.com/flatironinstitute/finufft). Take a look at the
[FINUFFT docs](https://finufft.readthedocs.io) for all the necessary
definitions, conventions, and more information about the algorithms and their
implementation. This package uses a low-level interface to directly expose the
FINUFFT library to JAX's XLA backend, as well as implementing differentiation
rules for the transforms.

## Included features

_This library is currently CPU-only, but GPU support is in the works using the
[cuFINUFFT library](https://github.com/flatironinstitute/cufinufft)._

[Type 1 and 2](https://finufft.readthedocs.io/en/latest/math.html) transforms
are supported in 1-, 2-, and 3-dimensions. All of these functions support
forward, reverse, and higher-order differentiation, as well as batching using
`vmap`.

## Installation

_For now, only a source build is supported._

For building, you should only need a recent version of Python (>3.6) and
[FFTW](https://www.fftw.org/). At runtime, you'll need `numpy`, `scipy`, and
`jax`. To set up such an environment, you can use `conda` (but you're welcome to
use whatever workflow works for you!):

```bash
conda create -n jax-finufft -c conda-forge python=3.9 numpy scipy fftw
python -m pip install "jax[cpu]"
```

Then you can install from source using (don't forget the `--recursive` flag
because FINUFFT is included as a submodule):

```bash
git clone --recursive https://github.com/dfm/jax-finufft
cd jax-finufft
python -m pip install .
```

## Usage

This library provides two high-level functions (and these should be all that you
generally need to interact with): `nufft1` and `nufft2` (for the two "types" of
transforms). If you're already familiar with the [Python
interface](https://finufft.readthedocs.io/en/latest/python.html) to FINUFFT,
_please note that the function signatures here are different_!

For example, here's how you can do a 1-dimensional type 1 transform:

```python
import numpy as np
from jax_finufft import nufft1

M = 100000
N = 200000

x = 2 * np.pi * np.random.uniform(size=M)
c = np.random.standard_normal(size=M) + 1j * np.random.standard_normal(size=M)
f = nufft1(N, c, x, eps=1e-6, iflag=1)
```

Noting that the `eps` and `iflag` are optional, and that (for good reason, I
promise!) the order of the positional arguments is reversed from the `finufft`
Python package.

The syntax for a 2-, or 3-dimensional transform is:

```python
f = nufft1((Nx, Ny), c, x, y)  # 2D
f = nufft1((Nx, Ny, Nz), c, x, y, z)  # 3D
```

The syntax for a type 2 transform is (also allowing optional `iflag` and `eps`
parameters):

```python
c = nufft2(f, x)  # 1D
c = nufft2(f, x, y)  # 2D
c = nufft2(f, x, y, z)  # 3D
```

## Similar libraries

- [finufft](https://finufft.readthedocs.io/en/latest/python.html): The
  "official" Python bindings to FINUFFT. A good choice if you're not already
  using JAX and if you don't need to differentiate through your transform.
- [mrphys/tensorflow-nufft](https://github.com/mrphys/tensorflow-nufft):
  TensorFlow bindings for FINUFFT and cuFINUFFT.

## License & attribution

This package, developed by Dan Foreman-Mackey is licensed under the Apache
License, Version 2.0, with the following copyright:

Copyright 2021 The Simons Foundation, Inc.

If you use this software, please cite the primary references listed on the
[FINUFFT docs](https://finufft.readthedocs.io/en/latest/refs.html).




%package -n python3-jax-finufft
Summary:	Unofficial JAX bindings for finufft
Provides:	python-jax-finufft
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-jax-finufft
# JAX bindings to FINUFFT

This package provides a [JAX](https://github.com/google/jax) interface to (a
subset of) the [Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT)
library](https://github.com/flatironinstitute/finufft). Take a look at the
[FINUFFT docs](https://finufft.readthedocs.io) for all the necessary
definitions, conventions, and more information about the algorithms and their
implementation. This package uses a low-level interface to directly expose the
FINUFFT library to JAX's XLA backend, as well as implementing differentiation
rules for the transforms.

## Included features

_This library is currently CPU-only, but GPU support is in the works using the
[cuFINUFFT library](https://github.com/flatironinstitute/cufinufft)._

[Type 1 and 2](https://finufft.readthedocs.io/en/latest/math.html) transforms
are supported in 1-, 2-, and 3-dimensions. All of these functions support
forward, reverse, and higher-order differentiation, as well as batching using
`vmap`.

## Installation

_For now, only a source build is supported._

For building, you should only need a recent version of Python (>3.6) and
[FFTW](https://www.fftw.org/). At runtime, you'll need `numpy`, `scipy`, and
`jax`. To set up such an environment, you can use `conda` (but you're welcome to
use whatever workflow works for you!):

```bash
conda create -n jax-finufft -c conda-forge python=3.9 numpy scipy fftw
python -m pip install "jax[cpu]"
```

Then you can install from source using (don't forget the `--recursive` flag
because FINUFFT is included as a submodule):

```bash
git clone --recursive https://github.com/dfm/jax-finufft
cd jax-finufft
python -m pip install .
```

## Usage

This library provides two high-level functions (and these should be all that you
generally need to interact with): `nufft1` and `nufft2` (for the two "types" of
transforms). If you're already familiar with the [Python
interface](https://finufft.readthedocs.io/en/latest/python.html) to FINUFFT,
_please note that the function signatures here are different_!

For example, here's how you can do a 1-dimensional type 1 transform:

```python
import numpy as np
from jax_finufft import nufft1

M = 100000
N = 200000

x = 2 * np.pi * np.random.uniform(size=M)
c = np.random.standard_normal(size=M) + 1j * np.random.standard_normal(size=M)
f = nufft1(N, c, x, eps=1e-6, iflag=1)
```

Noting that the `eps` and `iflag` are optional, and that (for good reason, I
promise!) the order of the positional arguments is reversed from the `finufft`
Python package.

The syntax for a 2-, or 3-dimensional transform is:

```python
f = nufft1((Nx, Ny), c, x, y)  # 2D
f = nufft1((Nx, Ny, Nz), c, x, y, z)  # 3D
```

The syntax for a type 2 transform is (also allowing optional `iflag` and `eps`
parameters):

```python
c = nufft2(f, x)  # 1D
c = nufft2(f, x, y)  # 2D
c = nufft2(f, x, y, z)  # 3D
```

## Similar libraries

- [finufft](https://finufft.readthedocs.io/en/latest/python.html): The
  "official" Python bindings to FINUFFT. A good choice if you're not already
  using JAX and if you don't need to differentiate through your transform.
- [mrphys/tensorflow-nufft](https://github.com/mrphys/tensorflow-nufft):
  TensorFlow bindings for FINUFFT and cuFINUFFT.

## License & attribution

This package, developed by Dan Foreman-Mackey is licensed under the Apache
License, Version 2.0, with the following copyright:

Copyright 2021 The Simons Foundation, Inc.

If you use this software, please cite the primary references listed on the
[FINUFFT docs](https://finufft.readthedocs.io/en/latest/refs.html).




%package help
Summary:	Development documents and examples for jax-finufft
Provides:	python3-jax-finufft-doc
%description help
# JAX bindings to FINUFFT

This package provides a [JAX](https://github.com/google/jax) interface to (a
subset of) the [Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT)
library](https://github.com/flatironinstitute/finufft). Take a look at the
[FINUFFT docs](https://finufft.readthedocs.io) for all the necessary
definitions, conventions, and more information about the algorithms and their
implementation. This package uses a low-level interface to directly expose the
FINUFFT library to JAX's XLA backend, as well as implementing differentiation
rules for the transforms.

## Included features

_This library is currently CPU-only, but GPU support is in the works using the
[cuFINUFFT library](https://github.com/flatironinstitute/cufinufft)._

[Type 1 and 2](https://finufft.readthedocs.io/en/latest/math.html) transforms
are supported in 1-, 2-, and 3-dimensions. All of these functions support
forward, reverse, and higher-order differentiation, as well as batching using
`vmap`.

## Installation

_For now, only a source build is supported._

For building, you should only need a recent version of Python (>3.6) and
[FFTW](https://www.fftw.org/). At runtime, you'll need `numpy`, `scipy`, and
`jax`. To set up such an environment, you can use `conda` (but you're welcome to
use whatever workflow works for you!):

```bash
conda create -n jax-finufft -c conda-forge python=3.9 numpy scipy fftw
python -m pip install "jax[cpu]"
```

Then you can install from source using (don't forget the `--recursive` flag
because FINUFFT is included as a submodule):

```bash
git clone --recursive https://github.com/dfm/jax-finufft
cd jax-finufft
python -m pip install .
```

## Usage

This library provides two high-level functions (and these should be all that you
generally need to interact with): `nufft1` and `nufft2` (for the two "types" of
transforms). If you're already familiar with the [Python
interface](https://finufft.readthedocs.io/en/latest/python.html) to FINUFFT,
_please note that the function signatures here are different_!

For example, here's how you can do a 1-dimensional type 1 transform:

```python
import numpy as np
from jax_finufft import nufft1

M = 100000
N = 200000

x = 2 * np.pi * np.random.uniform(size=M)
c = np.random.standard_normal(size=M) + 1j * np.random.standard_normal(size=M)
f = nufft1(N, c, x, eps=1e-6, iflag=1)
```

Noting that the `eps` and `iflag` are optional, and that (for good reason, I
promise!) the order of the positional arguments is reversed from the `finufft`
Python package.

The syntax for a 2-, or 3-dimensional transform is:

```python
f = nufft1((Nx, Ny), c, x, y)  # 2D
f = nufft1((Nx, Ny, Nz), c, x, y, z)  # 3D
```

The syntax for a type 2 transform is (also allowing optional `iflag` and `eps`
parameters):

```python
c = nufft2(f, x)  # 1D
c = nufft2(f, x, y)  # 2D
c = nufft2(f, x, y, z)  # 3D
```

## Similar libraries

- [finufft](https://finufft.readthedocs.io/en/latest/python.html): The
  "official" Python bindings to FINUFFT. A good choice if you're not already
  using JAX and if you don't need to differentiate through your transform.
- [mrphys/tensorflow-nufft](https://github.com/mrphys/tensorflow-nufft):
  TensorFlow bindings for FINUFFT and cuFINUFFT.

## License & attribution

This package, developed by Dan Foreman-Mackey is licensed under the Apache
License, Version 2.0, with the following copyright:

Copyright 2021 The Simons Foundation, Inc.

If you use this software, please cite the primary references listed on the
[FINUFFT docs](https://finufft.readthedocs.io/en/latest/refs.html).




%prep
%autosetup -n jax-finufft-0.0.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-jax-finufft -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.3-1
- Package Spec generated