1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
%global _empty_manifest_terminate_build 0
Name: python-keras-unet-collection
Version: 0.1.13
Release: 1
Summary: The Tensorflow, Keras implementation of U-net, V-net, U-net++, UNET 3+, Attention U-net, R2U-net, ResUnet-a, U^2-Net, TransUNET, and Swin-UNET with optional ImageNet-trained backbones.
License: MIT License
URL: https://github.com/yingkaisha/keras-unet-collection
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/de/ff/327b15609e498354cc15909280953b72f35854d33bc5fb9554e300e7968a/keras-unet-collection-0.1.13.tar.gz
BuildArch: noarch
%description
`keras_unet_collection.models` contains functions that configure keras models with hyper-parameter options.
* Pre-trained ImageNet backbones are supported for U-net, U-net++, UNET 3+, Attention U-net, and TransUNET.
* Deep supervision is supported for U-net++, UNET 3+, and U^2-Net.
* See the [User guide](https://github.com/yingkaisha/keras-unet-collection/blob/main/examples/user_guide_models.ipynb) for other options and use cases.
| `keras_unet_collection.models` | Name | Reference |
|:---------------|:----------------|:----------------|
| `unet_2d` | U-net | [Ronneberger et al. (2015)](https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28) |
| `vnet_2d` | V-net (modified for 2-d inputs) | [Milletari et al. (2016)](https://arxiv.org/abs/1606.04797) |
| `unet_plus_2d` | U-net++ | [Zhou et al. (2018)](https://link.springer.com/chapter/10.1007/978-3-030-00889-5_1) |
| `r2_unet_2d` | R2U-Net | [Alom et al. (2018)](https://arxiv.org/abs/1802.06955) |
| `att_unet_2d` | Attention U-net | [Oktay et al. (2018)](https://arxiv.org/abs/1804.03999) |
| `resunet_a_2d` | ResUnet-a | [Diakogiannis et al. (2020)](https://doi.org/10.1016/j.isprsjprs.2020.01.013) |
| `u2net_2d` | U^2-Net | [Qin et al. (2020)](https://arxiv.org/abs/2005.09007) |
| `unet_3plus_2d` | UNET 3+ | [Huang et al. (2020)](https://arxiv.org/abs/2004.08790) |
| `transunet_2d` | TransUNET | [Chen et al. (2021)](https://arxiv.org/abs/2102.04306) |
| `swin_unet_2d` | Swin-UNET | [Hu et al. (2021)](https://arxiv.org/abs/2105.05537) |
%package -n python3-keras-unet-collection
Summary: The Tensorflow, Keras implementation of U-net, V-net, U-net++, UNET 3+, Attention U-net, R2U-net, ResUnet-a, U^2-Net, TransUNET, and Swin-UNET with optional ImageNet-trained backbones.
Provides: python-keras-unet-collection
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-keras-unet-collection
`keras_unet_collection.models` contains functions that configure keras models with hyper-parameter options.
* Pre-trained ImageNet backbones are supported for U-net, U-net++, UNET 3+, Attention U-net, and TransUNET.
* Deep supervision is supported for U-net++, UNET 3+, and U^2-Net.
* See the [User guide](https://github.com/yingkaisha/keras-unet-collection/blob/main/examples/user_guide_models.ipynb) for other options and use cases.
| `keras_unet_collection.models` | Name | Reference |
|:---------------|:----------------|:----------------|
| `unet_2d` | U-net | [Ronneberger et al. (2015)](https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28) |
| `vnet_2d` | V-net (modified for 2-d inputs) | [Milletari et al. (2016)](https://arxiv.org/abs/1606.04797) |
| `unet_plus_2d` | U-net++ | [Zhou et al. (2018)](https://link.springer.com/chapter/10.1007/978-3-030-00889-5_1) |
| `r2_unet_2d` | R2U-Net | [Alom et al. (2018)](https://arxiv.org/abs/1802.06955) |
| `att_unet_2d` | Attention U-net | [Oktay et al. (2018)](https://arxiv.org/abs/1804.03999) |
| `resunet_a_2d` | ResUnet-a | [Diakogiannis et al. (2020)](https://doi.org/10.1016/j.isprsjprs.2020.01.013) |
| `u2net_2d` | U^2-Net | [Qin et al. (2020)](https://arxiv.org/abs/2005.09007) |
| `unet_3plus_2d` | UNET 3+ | [Huang et al. (2020)](https://arxiv.org/abs/2004.08790) |
| `transunet_2d` | TransUNET | [Chen et al. (2021)](https://arxiv.org/abs/2102.04306) |
| `swin_unet_2d` | Swin-UNET | [Hu et al. (2021)](https://arxiv.org/abs/2105.05537) |
%package help
Summary: Development documents and examples for keras-unet-collection
Provides: python3-keras-unet-collection-doc
%description help
`keras_unet_collection.models` contains functions that configure keras models with hyper-parameter options.
* Pre-trained ImageNet backbones are supported for U-net, U-net++, UNET 3+, Attention U-net, and TransUNET.
* Deep supervision is supported for U-net++, UNET 3+, and U^2-Net.
* See the [User guide](https://github.com/yingkaisha/keras-unet-collection/blob/main/examples/user_guide_models.ipynb) for other options and use cases.
| `keras_unet_collection.models` | Name | Reference |
|:---------------|:----------------|:----------------|
| `unet_2d` | U-net | [Ronneberger et al. (2015)](https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28) |
| `vnet_2d` | V-net (modified for 2-d inputs) | [Milletari et al. (2016)](https://arxiv.org/abs/1606.04797) |
| `unet_plus_2d` | U-net++ | [Zhou et al. (2018)](https://link.springer.com/chapter/10.1007/978-3-030-00889-5_1) |
| `r2_unet_2d` | R2U-Net | [Alom et al. (2018)](https://arxiv.org/abs/1802.06955) |
| `att_unet_2d` | Attention U-net | [Oktay et al. (2018)](https://arxiv.org/abs/1804.03999) |
| `resunet_a_2d` | ResUnet-a | [Diakogiannis et al. (2020)](https://doi.org/10.1016/j.isprsjprs.2020.01.013) |
| `u2net_2d` | U^2-Net | [Qin et al. (2020)](https://arxiv.org/abs/2005.09007) |
| `unet_3plus_2d` | UNET 3+ | [Huang et al. (2020)](https://arxiv.org/abs/2004.08790) |
| `transunet_2d` | TransUNET | [Chen et al. (2021)](https://arxiv.org/abs/2102.04306) |
| `swin_unet_2d` | Swin-UNET | [Hu et al. (2021)](https://arxiv.org/abs/2105.05537) |
%prep
%autosetup -n keras-unet-collection-0.1.13
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-keras-unet-collection -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.13-1
- Package Spec generated
|