1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
%global _empty_manifest_terminate_build 0
Name: python-kmapper
Version: 2.0.1
Release: 1
Summary: Python implementation of Mapper algorithm for Topological Data Analysis.
License: MIT
URL: http://kepler-mapper.scikit-tda.org
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/72/7e/d3ff347d053fd60f13c42522e7264b8bc3003c3e389cf61745274447a0d1/kmapper-2.0.1.tar.gz
BuildArch: noarch
Requires: python3-scikit-learn
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-Jinja2
Requires: python3-sktda-docs-config
Requires: python3-pandas
Requires: python3-sphinx-gallery
Requires: python3-networkx
Requires: python3-matplotlib
Requires: python3-igraph
Requires: python3-plotly
Requires: python3-ipywidgets
Requires: python3-pytest
Requires: python3-networkx
Requires: python3-matplotlib
Requires: python3-igraph
Requires: python3-plotly
Requires: python3-ipywidgets
%description
[](https://badge.fury.io/py/kmapper)
[](https://pypi.python.org/pypi/kmapper/)
[](https://travis-ci.org/scikit-tda/kepler-mapper)
[](https://codecov.io/gh/scikit-tda/kepler-mapper)
[](https://doi.org/10.21105/joss.01315)
[](https://doi.org/10.5281/zenodo.1002377)
# KeplerMapper <img align="right" width="40" height="40" src="http://i.imgur.com/axOG6GJ.jpg">
> Nature uses as little as possible of anything. - Johannes Kepler
This is a Python implementation of the TDA Mapper algorithm for visualization of high-dimensional data. For complete documentation, see [https://kepler-mapper.scikit-tda.org](https://kepler-mapper.scikit-tda.org).
KeplerMapper employs approaches based on the Mapper algorithm (Singh et al.) as first described in the paper "Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition".
KeplerMapper can make use of Scikit-Learn API compatible cluster and scaling algorithms.
## Install
### Dependencies
KeplerMapper requires:
- Python (>= 3.6)
- NumPy
- Scikit-learn
Using the plotly visualizations requires a few extra libraries:
- Python-Igraph
- Plotly
- Ipywidgets
Additionally, running some of the examples requires:
- matplotlib
- umap-learn
### Installation
Install KeplerMapper with pip:
```
pip install kmapper
```
To install from source:
```
git clone https://github.com/MLWave/kepler-mapper
cd kepler-mapper
pip install -e .
```
## Usage
KeplerMapper adopts the scikit-learn API as much as possible, so it should feel very familiar to anyone who has used these libraries.
### Python code
```python
# Import the class
import kmapper as km
# Some sample data
from sklearn import datasets
data, labels = datasets.make_circles(n_samples=5000, noise=0.03, factor=0.3)
# Initialize
mapper = km.KeplerMapper(verbose=1)
# Fit to and transform the data
projected_data = mapper.fit_transform(data, projection=[0,1]) # X-Y axis
# Create dictionary called 'graph' with nodes, edges and meta-information
graph = mapper.map(projected_data, data, cover=km.Cover(n_cubes=10))
# Visualize it
mapper.visualize(graph, path_html="make_circles_keplermapper_output.html",
title="make_circles(n_samples=5000, noise=0.03, factor=0.3)")
```
## Disclaimer
Standard MIT disclaimer applies, see `DISCLAIMER.md` for full text. Development status is Alpha.
## How to cite
To credit KeplerMapper in your work: https://kepler-mapper.scikit-tda.org/en/latest/#citations
%package -n python3-kmapper
Summary: Python implementation of Mapper algorithm for Topological Data Analysis.
Provides: python-kmapper
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-kmapper
[](https://badge.fury.io/py/kmapper)
[](https://pypi.python.org/pypi/kmapper/)
[](https://travis-ci.org/scikit-tda/kepler-mapper)
[](https://codecov.io/gh/scikit-tda/kepler-mapper)
[](https://doi.org/10.21105/joss.01315)
[](https://doi.org/10.5281/zenodo.1002377)
# KeplerMapper <img align="right" width="40" height="40" src="http://i.imgur.com/axOG6GJ.jpg">
> Nature uses as little as possible of anything. - Johannes Kepler
This is a Python implementation of the TDA Mapper algorithm for visualization of high-dimensional data. For complete documentation, see [https://kepler-mapper.scikit-tda.org](https://kepler-mapper.scikit-tda.org).
KeplerMapper employs approaches based on the Mapper algorithm (Singh et al.) as first described in the paper "Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition".
KeplerMapper can make use of Scikit-Learn API compatible cluster and scaling algorithms.
## Install
### Dependencies
KeplerMapper requires:
- Python (>= 3.6)
- NumPy
- Scikit-learn
Using the plotly visualizations requires a few extra libraries:
- Python-Igraph
- Plotly
- Ipywidgets
Additionally, running some of the examples requires:
- matplotlib
- umap-learn
### Installation
Install KeplerMapper with pip:
```
pip install kmapper
```
To install from source:
```
git clone https://github.com/MLWave/kepler-mapper
cd kepler-mapper
pip install -e .
```
## Usage
KeplerMapper adopts the scikit-learn API as much as possible, so it should feel very familiar to anyone who has used these libraries.
### Python code
```python
# Import the class
import kmapper as km
# Some sample data
from sklearn import datasets
data, labels = datasets.make_circles(n_samples=5000, noise=0.03, factor=0.3)
# Initialize
mapper = km.KeplerMapper(verbose=1)
# Fit to and transform the data
projected_data = mapper.fit_transform(data, projection=[0,1]) # X-Y axis
# Create dictionary called 'graph' with nodes, edges and meta-information
graph = mapper.map(projected_data, data, cover=km.Cover(n_cubes=10))
# Visualize it
mapper.visualize(graph, path_html="make_circles_keplermapper_output.html",
title="make_circles(n_samples=5000, noise=0.03, factor=0.3)")
```
## Disclaimer
Standard MIT disclaimer applies, see `DISCLAIMER.md` for full text. Development status is Alpha.
## How to cite
To credit KeplerMapper in your work: https://kepler-mapper.scikit-tda.org/en/latest/#citations
%package help
Summary: Development documents and examples for kmapper
Provides: python3-kmapper-doc
%description help
[](https://badge.fury.io/py/kmapper)
[](https://pypi.python.org/pypi/kmapper/)
[](https://travis-ci.org/scikit-tda/kepler-mapper)
[](https://codecov.io/gh/scikit-tda/kepler-mapper)
[](https://doi.org/10.21105/joss.01315)
[](https://doi.org/10.5281/zenodo.1002377)
# KeplerMapper <img align="right" width="40" height="40" src="http://i.imgur.com/axOG6GJ.jpg">
> Nature uses as little as possible of anything. - Johannes Kepler
This is a Python implementation of the TDA Mapper algorithm for visualization of high-dimensional data. For complete documentation, see [https://kepler-mapper.scikit-tda.org](https://kepler-mapper.scikit-tda.org).
KeplerMapper employs approaches based on the Mapper algorithm (Singh et al.) as first described in the paper "Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition".
KeplerMapper can make use of Scikit-Learn API compatible cluster and scaling algorithms.
## Install
### Dependencies
KeplerMapper requires:
- Python (>= 3.6)
- NumPy
- Scikit-learn
Using the plotly visualizations requires a few extra libraries:
- Python-Igraph
- Plotly
- Ipywidgets
Additionally, running some of the examples requires:
- matplotlib
- umap-learn
### Installation
Install KeplerMapper with pip:
```
pip install kmapper
```
To install from source:
```
git clone https://github.com/MLWave/kepler-mapper
cd kepler-mapper
pip install -e .
```
## Usage
KeplerMapper adopts the scikit-learn API as much as possible, so it should feel very familiar to anyone who has used these libraries.
### Python code
```python
# Import the class
import kmapper as km
# Some sample data
from sklearn import datasets
data, labels = datasets.make_circles(n_samples=5000, noise=0.03, factor=0.3)
# Initialize
mapper = km.KeplerMapper(verbose=1)
# Fit to and transform the data
projected_data = mapper.fit_transform(data, projection=[0,1]) # X-Y axis
# Create dictionary called 'graph' with nodes, edges and meta-information
graph = mapper.map(projected_data, data, cover=km.Cover(n_cubes=10))
# Visualize it
mapper.visualize(graph, path_html="make_circles_keplermapper_output.html",
title="make_circles(n_samples=5000, noise=0.03, factor=0.3)")
```
## Disclaimer
Standard MIT disclaimer applies, see `DISCLAIMER.md` for full text. Development status is Alpha.
## How to cite
To credit KeplerMapper in your work: https://kepler-mapper.scikit-tda.org/en/latest/#citations
%prep
%autosetup -n kmapper-2.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-kmapper -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.1-1
- Package Spec generated
|