diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-05-05 03:36:37 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 03:36:37 +0000 |
| commit | fafc997f831cd01e542df41aa3f4f5ec7205fc0c (patch) | |
| tree | 36d3152d26550922eccd1720d8ff662a0f74686f | |
| parent | b998592954ada9019acf101711a3ee24c2eb5ece (diff) | |
automatic import of python-kxyopeneuler20.03
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-kxy.spec | 206 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 208 insertions, 0 deletions
@@ -0,0 +1 @@ +/kxy-1.4.11.tar.gz diff --git a/python-kxy.spec b/python-kxy.spec new file mode 100644 index 0000000..41c0b07 --- /dev/null +++ b/python-kxy.spec @@ -0,0 +1,206 @@ +%global _empty_manifest_terminate_build 0 +Name: python-kxy +Version: 1.4.11 +Release: 1 +Summary: A Powerful Serverless Pre-Learning and Post-Learning Analysis Toolkit +License: GPLv3 +URL: https://www.kxy.ai +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/43/d1/a8ce29122712ba3edd8cfabcbd2a0f30bfb3534b4f406f5489fa5c982a4b/kxy-1.4.11.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-scipy +Requires: python3-pandas +Requires: python3-requests +Requires: python3-pandarallel +Requires: python3-halo +Requires: python3-ipywidgets +Requires: python3-scikit-learn + +%description +# Boosting The Productivity of Machine Learning Engineers +[](https://github.com/kxytechnologies/kxy-python/blob/master/LICENSE) +[](https://www.kxy.ai/) +[](https://www.kxy.ai/) +## Documentation +https://www.kxy.ai/reference/ +## Blog +https://blog.kxy.ai +## Installation +From PyPi: +```Bash +pip install kxy -U +``` +From GitHub: +```Bash +git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install . +``` +## Authentication +All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run +```Bash +kxy configure +``` +and follow the instructions. To get your own API key you need an account; you can sign up [here](https://www.kxy.ai/signup/). You'll then be automatically given an API key which you can find [here](https://www.kxy.ai/portal/profile/identity/). +## Docker +The Docker image [kxytechnologies/kxy](https://hub.docker.com/repository/docker/kxytechnologies/kxy) has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package. +To start a Jupyter Notebook server from a sandboxed Docker environment, run +```Bash +docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" +``` +where you should replace `<YOUR API KEY>` with your API key and navigate to [http://localhost:5555](http://localhost:5555) in your browser. This docker environment comes with [all examples available on the documentation website](https://www.kxy.ai/reference/latest/examples/). +To start a Jupyter Notebook server from an existing directory of notebooks, run +```Bash +docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" +``` +where you should replace `</path/to/your/local/dir>` with the path to your local notebook folder and navigate to [http://localhost:5555](http://localhost:5555) in your browser. +You can also get the same Docker image from GitHub [here](https://github.com/kxytechnologies/kxy-python/pkgs/container/kxy-python). +## Other Programming Language +We plan to release friendly API client in more programming language. +In the meantime, you can directly issue requests to our [RESTFul API](https://www.kxy.ai/reference/latest/api/index.html) using your favorite programming language. +## Pricing +All API keys are given a free quota (a few dozen backend tasks) that should be enough to try out the package and see if you love it. Beyond the free quota you will be billed a small fee per task. +KXY is free for academic use; simply signup with your university email. +KXY is also free for Kaggle competitions; sign up and email kaggle@kxy.ai to get a promotional code. + +%package -n python3-kxy +Summary: A Powerful Serverless Pre-Learning and Post-Learning Analysis Toolkit +Provides: python-kxy +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-kxy +# Boosting The Productivity of Machine Learning Engineers +[](https://github.com/kxytechnologies/kxy-python/blob/master/LICENSE) +[](https://www.kxy.ai/) +[](https://www.kxy.ai/) +## Documentation +https://www.kxy.ai/reference/ +## Blog +https://blog.kxy.ai +## Installation +From PyPi: +```Bash +pip install kxy -U +``` +From GitHub: +```Bash +git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install . +``` +## Authentication +All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run +```Bash +kxy configure +``` +and follow the instructions. To get your own API key you need an account; you can sign up [here](https://www.kxy.ai/signup/). You'll then be automatically given an API key which you can find [here](https://www.kxy.ai/portal/profile/identity/). +## Docker +The Docker image [kxytechnologies/kxy](https://hub.docker.com/repository/docker/kxytechnologies/kxy) has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package. +To start a Jupyter Notebook server from a sandboxed Docker environment, run +```Bash +docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" +``` +where you should replace `<YOUR API KEY>` with your API key and navigate to [http://localhost:5555](http://localhost:5555) in your browser. This docker environment comes with [all examples available on the documentation website](https://www.kxy.ai/reference/latest/examples/). +To start a Jupyter Notebook server from an existing directory of notebooks, run +```Bash +docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" +``` +where you should replace `</path/to/your/local/dir>` with the path to your local notebook folder and navigate to [http://localhost:5555](http://localhost:5555) in your browser. +You can also get the same Docker image from GitHub [here](https://github.com/kxytechnologies/kxy-python/pkgs/container/kxy-python). +## Other Programming Language +We plan to release friendly API client in more programming language. +In the meantime, you can directly issue requests to our [RESTFul API](https://www.kxy.ai/reference/latest/api/index.html) using your favorite programming language. +## Pricing +All API keys are given a free quota (a few dozen backend tasks) that should be enough to try out the package and see if you love it. Beyond the free quota you will be billed a small fee per task. +KXY is free for academic use; simply signup with your university email. +KXY is also free for Kaggle competitions; sign up and email kaggle@kxy.ai to get a promotional code. + +%package help +Summary: Development documents and examples for kxy +Provides: python3-kxy-doc +%description help +# Boosting The Productivity of Machine Learning Engineers +[](https://github.com/kxytechnologies/kxy-python/blob/master/LICENSE) +[](https://www.kxy.ai/) +[](https://www.kxy.ai/) +## Documentation +https://www.kxy.ai/reference/ +## Blog +https://blog.kxy.ai +## Installation +From PyPi: +```Bash +pip install kxy -U +``` +From GitHub: +```Bash +git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install . +``` +## Authentication +All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run +```Bash +kxy configure +``` +and follow the instructions. To get your own API key you need an account; you can sign up [here](https://www.kxy.ai/signup/). You'll then be automatically given an API key which you can find [here](https://www.kxy.ai/portal/profile/identity/). +## Docker +The Docker image [kxytechnologies/kxy](https://hub.docker.com/repository/docker/kxytechnologies/kxy) has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package. +To start a Jupyter Notebook server from a sandboxed Docker environment, run +```Bash +docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" +``` +where you should replace `<YOUR API KEY>` with your API key and navigate to [http://localhost:5555](http://localhost:5555) in your browser. This docker environment comes with [all examples available on the documentation website](https://www.kxy.ai/reference/latest/examples/). +To start a Jupyter Notebook server from an existing directory of notebooks, run +```Bash +docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" +``` +where you should replace `</path/to/your/local/dir>` with the path to your local notebook folder and navigate to [http://localhost:5555](http://localhost:5555) in your browser. +You can also get the same Docker image from GitHub [here](https://github.com/kxytechnologies/kxy-python/pkgs/container/kxy-python). +## Other Programming Language +We plan to release friendly API client in more programming language. +In the meantime, you can directly issue requests to our [RESTFul API](https://www.kxy.ai/reference/latest/api/index.html) using your favorite programming language. +## Pricing +All API keys are given a free quota (a few dozen backend tasks) that should be enough to try out the package and see if you love it. Beyond the free quota you will be billed a small fee per task. +KXY is free for academic use; simply signup with your university email. +KXY is also free for Kaggle competitions; sign up and email kaggle@kxy.ai to get a promotional code. + +%prep +%autosetup -n kxy-1.4.11 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-kxy -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.11-1 +- Package Spec generated @@ -0,0 +1 @@ +3436b530ab08d0c5c0274220636cc49c kxy-1.4.11.tar.gz |
