1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
|
%global _empty_manifest_terminate_build 0
Name: python-label-studio
Version: 1.7.3
Release: 1
Summary: Label Studio annotation tool
License: Apache Software License
URL: https://github.com/heartexlabs/label-studio
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/33/2b/ff76b68ea7bc4abd6557966e896e817a6d14ba0f5f31ddc8006335bf3172/label-studio-1.7.3.tar.gz
BuildArch: noarch
Requires: python3-wheel
Requires: python3-appdirs
Requires: python3-attr
Requires: python3-attrs
Requires: python3-pyyaml
Requires: python3-azure-storage-blob
Requires: python3-boto
Requires: python3-boto3
Requires: python3-botocore
Requires: python3-bleach
Requires: python3-google-api-core
Requires: python3-google-auth
Requires: python3-google-cloud-appengine-logging
Requires: python3-google-cloud-audit-log
Requires: python3-google-cloud-core
Requires: python3-google-cloud-storage
Requires: python3-google-cloud-logging
Requires: python3-google-resumable-media
Requires: python3-googleapis-common-protos
Requires: python3-grpc-google-iam-v1
Requires: python3-Django
Requires: python3-django-storages
Requires: python3-django-annoying
Requires: python3-django-debug-toolbar
Requires: python3-django-filter
Requires: python3-django-model-utils
Requires: python3-django-rq
Requires: python3-django-cors-headers
Requires: python3-django-extensions
Requires: python3-django-rest-swagger
Requires: python3-django-user-agents
Requires: python3-django-ranged-fileresponse
Requires: python3-drf-dynamic-fields
Requires: python3-djangorestframework
Requires: python3-drf-flex-fields
Requires: python3-drf-yasg
Requires: python3-drf-generators
Requires: python3-htmlmin
Requires: python3-jsonschema
Requires: python3-lockfile
Requires: python3-lxml
Requires: python3-defusedxml
Requires: python3-numpy
Requires: python3-ordered-set
Requires: python3-pandas
Requires: python3-protobuf
Requires: python3-psycopg2-binary
Requires: python3-pydantic
Requires: python3-dateutil
Requires: python3-pytz
Requires: python3-requests
Requires: python3-rq
Requires: python3-rules
Requires: python3-ujson
Requires: python3-xmljson
Requires: python3-colorama
Requires: python3-boxing
Requires: python3-redis
Requires: python3-sentry-sdk
Requires: python3-launchdarkly-server-sdk
Requires: python3-json-logger
Requires: python3-label-studio-converter
Requires: python3-mysqlclient
%description
<img src="https://user-images.githubusercontent.com/12534576/192582340-4c9e4401-1fe6-4dbb-95bb-fdbba5493f61.png"/>
  
[Website](https://labelstud.io/) • [Docs](https://labelstud.io/guide/) • [Twitter](https://twitter.com/labelstudiohq) • [Join Slack Community <img src="https://app.heartex.ai/docs/images/slack-mini.png" width="18px"/>](https://slack.labelstudio.heartex.com/?source=github-1)
## What is Label Studio?
<!-- <a href="https://labelstud.io/blog/release-130.html"><img src="https://github.com/heartexlabs/label-studio/raw/master/docs/themes/htx/source/images/release-130/LS-Hits-v1.3.png" align="right" /></a> -->
Label Studio is an open source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models.
- [Try out Label Studio](#try-out-label-studio)
- [What you get from Label Studio](#what-you-get-from-label-studio)
- [Included templates for labeling data in Label Studio](#included-templates-for-labeling-data-in-label-studio)
- [Set up machine learning models with Label Studio](#set-up-machine-learning-models-with-Label-Studio)
- [Integrate Label Studio with your existing tools](#integrate-label-studio-with-your-existing-tools)

Have a custom dataset? You can customize Label Studio to fit your needs. Read an [introductory blog post](https://towardsdatascience.com/introducing-label-studio-a-swiss-army-knife-of-data-labeling-140c1be92881) to learn more.
## Try out Label Studio
Install Label Studio locally, or deploy it in a cloud instance. [Or, sign up for a free trial of our Enterprise edition.](https://heartex.com/free-trial).
- [Install locally with Docker](#install-locally-with-docker)
- [Run with Docker Compose (Label Studio + Nginx + PostgreSQL)](#run-with-docker-compose)
- [Install locally with pip](#install-locally-with-pip)
- [Install locally with Anaconda](#install-locally-with-anaconda)
- [Install for local development](#install-for-local-development)
- [Deploy in a cloud instance](#deploy-in-a-cloud-instance)
### Install locally with Docker
Official Label Studio docker image is [here](https://hub.docker.com/r/heartexlabs/label-studio) and it can be downloaded with `docker pull`.
Run Label Studio in a Docker container and access it at `http://localhost:8080`.
```bash
docker pull heartexlabs/label-studio:latest
docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest
```
You can find all the generated assets, including SQLite3 database storage `label_studio.sqlite3` and uploaded files, in the `./mydata` directory.
#### Override default Docker install
You can override the default launch command by appending the new arguments:
```bash
docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest label-studio --log-level DEBUG
```
#### Build a local image with Docker
If you want to build a local image, run:
```bash
docker build -t heartexlabs/label-studio:latest .
```
### Run with Docker Compose
Docker Compose script provides production-ready stack consisting of the following components:
- Label Studio
- [Nginx](https://www.nginx.com/) - proxy web server used to load various static data, including uploaded audio, images, etc.
- [PostgreSQL](https://www.postgresql.org/) - production-ready database that replaces less performant SQLite3.
To start using the app from `http://localhost` run this command:
```bash
docker-compose up
```
### Install locally with pip
```bash
# Requires Python >=3.7 <=3.9
pip install label-studio
# Start the server at http://localhost:8080
label-studio
```
### Install locally with Anaconda
```bash
conda create --name label-studio
conda activate label-studio
pip install label-studio
```
### Install for local development
You can run the latest Label Studio version locally without installing the package with pip.
```bash
# Install all package dependencies
pip install -e .
# Run database migrations
python label_studio/manage.py migrate
python label_studio/manage.py collectstatic
# Start the server in development mode at http://localhost:8080
python label_studio/manage.py runserver
```
### Deploy in a cloud instance
You can deploy Label Studio with one click in Heroku, Microsoft Azure, or Google Cloud Platform:
[<img src="https://www.herokucdn.com/deploy/button.svg" height="30px">](https://heroku.com/deploy?template=https://github.com/heartexlabs/label-studio/tree/heroku-persistent-pg)
[<img src="https://aka.ms/deploytoazurebutton" height="30px">](https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fheartexlabs%2Flabel-studio%2Fmaster%2Fazuredeploy.json)
[<img src="https://deploy.cloud.run/button.svg" height="30px">](https://deploy.cloud.run)
#### Apply frontend changes
The frontend part of Label Studio app lies in the `frontend/` folder and written in React JSX. In case you've made some changes there, the following commands should be run before building / starting the instance:
```
cd label_studio/frontend/
npm ci
npx webpack
cd ../..
python label_studio/manage.py collectstatic --no-input
```
### Troubleshoot installation
If you see any errors during installation, try to rerun the installation
```bash
pip install --ignore-installed label-studio
```
#### Install dependencies on Windows
To run Label Studio on Windows, download and install the following wheel packages from [Gohlke builds](https://www.lfd.uci.edu/~gohlke/pythonlibs) to ensure you're using the correct version of Python:
- [lxml](https://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml)
```bash
# Upgrade pip
pip install -U pip
# If you're running Win64 with Python 3.8, install the packages downloaded from Gohlke:
pip install lxml‑4.5.0‑cp38‑cp38‑win_amd64.whl
# Install label studio
pip install label-studio
```
#### Run test suite
```bash
pip install -r deploy/requirements-test.txt
cd label_studio
# postgres (assumes default postgres user,db,pass)
DJANGO_DB=default DJANGO_SETTINGS_MODULE=core.settings.label_studio python -m pytest -vv -n auto
# sqlite3
DJANGO_DB=sqlite DJANGO_SETTINGS_MODULE=core.settings.label_studio python -m pytest -vv -n auto
```
## What you get from Label Studio

- **Multi-user labeling** sign up and login, when you create an annotation it's tied to your account.
- **Multiple projects** to work on all your datasets in one instance.
- **Streamlined design** helps you focus on your task, not how to use the software.
- **Configurable label formats** let you customize the visual interface to meet your specific labeling needs.
- **Support for multiple data types** including images, audio, text, HTML, time-series, and video.
- **Import from files or from cloud storage** in Amazon AWS S3, Google Cloud Storage, or JSON, CSV, TSV, RAR, and ZIP archives.
- **Integration with machine learning models** so that you can visualize and compare predictions from different models and perform pre-labeling.
- **Embed it in your data pipeline** REST API makes it easy to make it a part of your pipeline
## Included templates for labeling data in Label Studio
Label Studio includes a variety of templates to help you label your data, or you can create your own using specifically designed configuration language. The most common templates and use cases for labeling include the following cases:
<img src="https://raw.githubusercontent.com/heartexlabs/label-studio/master/images/templates-categories.jpg" />
## Set up machine learning models with Label Studio
Connect your favorite machine learning model using the Label Studio Machine Learning SDK. Follow these steps:
1. Start your own machine learning backend server. See [more detailed instructions](https://github.com/heartexlabs/label-studio-ml-backend).
2. Connect Label Studio to the server on the model page found in project settings.
This lets you:
- **Pre-label** your data using model predictions.
- Do **online learning** and retrain your model while new annotations are being created.
- Do **active learning** by labeling only the most complex examples in your data.
## Integrate Label Studio with your existing tools
You can use Label Studio as an independent part of your machine learning workflow or integrate the frontend or backend into your existing tools.
* Use the [Label Studio Frontend](https://github.com/heartexlabs/label-studio-frontend) as a separate React library. See more in the [Frontend Library documentation](https://labelstud.io/guide/frontend.html).
## Ecosystem
| Project | Description |
|-|-|
| label-studio | Server, distributed as a pip package |
| [label-studio-frontend](https://github.com/heartexlabs/label-studio-frontend) | React and JavaScript frontend and can run standalone in a web browser or be embedded into your application. |
| [data-manager](https://github.com/heartexlabs/dm2) | React and JavaScript frontend for managing data. Includes the Label Studio Frontend. Relies on the label-studio server or a custom backend with the expected API methods. |
| [label-studio-converter](https://github.com/heartexlabs/label-studio-converter) | Encode labels in the format of your favorite machine learning library |
| [label-studio-transformers](https://github.com/heartexlabs/label-studio-transformers) | Transformers library connected and configured for use with Label Studio |
## Roadmap
Want to use **The Coolest Feature X** but Label Studio doesn't support it? Check out [our public roadmap](roadmap.md)!
## Citation
```tex
@misc{Label Studio,
title={{Label Studio}: Data labeling software},
url={https://github.com/heartexlabs/label-studio},
note={Open source software available from https://github.com/heartexlabs/label-studio},
author={
Maxim Tkachenko and
Mikhail Malyuk and
Andrey Holmanyuk and
Nikolai Liubimov},
year={2020-2022},
}
```
## License
This software is licensed under the [Apache 2.0 LICENSE](/LICENSE) © [Heartex](https://www.heartex.com/). 2020-2022
<img src="https://user-images.githubusercontent.com/12534576/192582529-cf628f58-abc5-479b-a0d4-8a3542a4b35e.png" title="Hey everyone!" width="180" />
%package -n python3-label-studio
Summary: Label Studio annotation tool
Provides: python-label-studio
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-label-studio
<img src="https://user-images.githubusercontent.com/12534576/192582340-4c9e4401-1fe6-4dbb-95bb-fdbba5493f61.png"/>
  
[Website](https://labelstud.io/) • [Docs](https://labelstud.io/guide/) • [Twitter](https://twitter.com/labelstudiohq) • [Join Slack Community <img src="https://app.heartex.ai/docs/images/slack-mini.png" width="18px"/>](https://slack.labelstudio.heartex.com/?source=github-1)
## What is Label Studio?
<!-- <a href="https://labelstud.io/blog/release-130.html"><img src="https://github.com/heartexlabs/label-studio/raw/master/docs/themes/htx/source/images/release-130/LS-Hits-v1.3.png" align="right" /></a> -->
Label Studio is an open source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models.
- [Try out Label Studio](#try-out-label-studio)
- [What you get from Label Studio](#what-you-get-from-label-studio)
- [Included templates for labeling data in Label Studio](#included-templates-for-labeling-data-in-label-studio)
- [Set up machine learning models with Label Studio](#set-up-machine-learning-models-with-Label-Studio)
- [Integrate Label Studio with your existing tools](#integrate-label-studio-with-your-existing-tools)

Have a custom dataset? You can customize Label Studio to fit your needs. Read an [introductory blog post](https://towardsdatascience.com/introducing-label-studio-a-swiss-army-knife-of-data-labeling-140c1be92881) to learn more.
## Try out Label Studio
Install Label Studio locally, or deploy it in a cloud instance. [Or, sign up for a free trial of our Enterprise edition.](https://heartex.com/free-trial).
- [Install locally with Docker](#install-locally-with-docker)
- [Run with Docker Compose (Label Studio + Nginx + PostgreSQL)](#run-with-docker-compose)
- [Install locally with pip](#install-locally-with-pip)
- [Install locally with Anaconda](#install-locally-with-anaconda)
- [Install for local development](#install-for-local-development)
- [Deploy in a cloud instance](#deploy-in-a-cloud-instance)
### Install locally with Docker
Official Label Studio docker image is [here](https://hub.docker.com/r/heartexlabs/label-studio) and it can be downloaded with `docker pull`.
Run Label Studio in a Docker container and access it at `http://localhost:8080`.
```bash
docker pull heartexlabs/label-studio:latest
docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest
```
You can find all the generated assets, including SQLite3 database storage `label_studio.sqlite3` and uploaded files, in the `./mydata` directory.
#### Override default Docker install
You can override the default launch command by appending the new arguments:
```bash
docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest label-studio --log-level DEBUG
```
#### Build a local image with Docker
If you want to build a local image, run:
```bash
docker build -t heartexlabs/label-studio:latest .
```
### Run with Docker Compose
Docker Compose script provides production-ready stack consisting of the following components:
- Label Studio
- [Nginx](https://www.nginx.com/) - proxy web server used to load various static data, including uploaded audio, images, etc.
- [PostgreSQL](https://www.postgresql.org/) - production-ready database that replaces less performant SQLite3.
To start using the app from `http://localhost` run this command:
```bash
docker-compose up
```
### Install locally with pip
```bash
# Requires Python >=3.7 <=3.9
pip install label-studio
# Start the server at http://localhost:8080
label-studio
```
### Install locally with Anaconda
```bash
conda create --name label-studio
conda activate label-studio
pip install label-studio
```
### Install for local development
You can run the latest Label Studio version locally without installing the package with pip.
```bash
# Install all package dependencies
pip install -e .
# Run database migrations
python label_studio/manage.py migrate
python label_studio/manage.py collectstatic
# Start the server in development mode at http://localhost:8080
python label_studio/manage.py runserver
```
### Deploy in a cloud instance
You can deploy Label Studio with one click in Heroku, Microsoft Azure, or Google Cloud Platform:
[<img src="https://www.herokucdn.com/deploy/button.svg" height="30px">](https://heroku.com/deploy?template=https://github.com/heartexlabs/label-studio/tree/heroku-persistent-pg)
[<img src="https://aka.ms/deploytoazurebutton" height="30px">](https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fheartexlabs%2Flabel-studio%2Fmaster%2Fazuredeploy.json)
[<img src="https://deploy.cloud.run/button.svg" height="30px">](https://deploy.cloud.run)
#### Apply frontend changes
The frontend part of Label Studio app lies in the `frontend/` folder and written in React JSX. In case you've made some changes there, the following commands should be run before building / starting the instance:
```
cd label_studio/frontend/
npm ci
npx webpack
cd ../..
python label_studio/manage.py collectstatic --no-input
```
### Troubleshoot installation
If you see any errors during installation, try to rerun the installation
```bash
pip install --ignore-installed label-studio
```
#### Install dependencies on Windows
To run Label Studio on Windows, download and install the following wheel packages from [Gohlke builds](https://www.lfd.uci.edu/~gohlke/pythonlibs) to ensure you're using the correct version of Python:
- [lxml](https://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml)
```bash
# Upgrade pip
pip install -U pip
# If you're running Win64 with Python 3.8, install the packages downloaded from Gohlke:
pip install lxml‑4.5.0‑cp38‑cp38‑win_amd64.whl
# Install label studio
pip install label-studio
```
#### Run test suite
```bash
pip install -r deploy/requirements-test.txt
cd label_studio
# postgres (assumes default postgres user,db,pass)
DJANGO_DB=default DJANGO_SETTINGS_MODULE=core.settings.label_studio python -m pytest -vv -n auto
# sqlite3
DJANGO_DB=sqlite DJANGO_SETTINGS_MODULE=core.settings.label_studio python -m pytest -vv -n auto
```
## What you get from Label Studio

- **Multi-user labeling** sign up and login, when you create an annotation it's tied to your account.
- **Multiple projects** to work on all your datasets in one instance.
- **Streamlined design** helps you focus on your task, not how to use the software.
- **Configurable label formats** let you customize the visual interface to meet your specific labeling needs.
- **Support for multiple data types** including images, audio, text, HTML, time-series, and video.
- **Import from files or from cloud storage** in Amazon AWS S3, Google Cloud Storage, or JSON, CSV, TSV, RAR, and ZIP archives.
- **Integration with machine learning models** so that you can visualize and compare predictions from different models and perform pre-labeling.
- **Embed it in your data pipeline** REST API makes it easy to make it a part of your pipeline
## Included templates for labeling data in Label Studio
Label Studio includes a variety of templates to help you label your data, or you can create your own using specifically designed configuration language. The most common templates and use cases for labeling include the following cases:
<img src="https://raw.githubusercontent.com/heartexlabs/label-studio/master/images/templates-categories.jpg" />
## Set up machine learning models with Label Studio
Connect your favorite machine learning model using the Label Studio Machine Learning SDK. Follow these steps:
1. Start your own machine learning backend server. See [more detailed instructions](https://github.com/heartexlabs/label-studio-ml-backend).
2. Connect Label Studio to the server on the model page found in project settings.
This lets you:
- **Pre-label** your data using model predictions.
- Do **online learning** and retrain your model while new annotations are being created.
- Do **active learning** by labeling only the most complex examples in your data.
## Integrate Label Studio with your existing tools
You can use Label Studio as an independent part of your machine learning workflow or integrate the frontend or backend into your existing tools.
* Use the [Label Studio Frontend](https://github.com/heartexlabs/label-studio-frontend) as a separate React library. See more in the [Frontend Library documentation](https://labelstud.io/guide/frontend.html).
## Ecosystem
| Project | Description |
|-|-|
| label-studio | Server, distributed as a pip package |
| [label-studio-frontend](https://github.com/heartexlabs/label-studio-frontend) | React and JavaScript frontend and can run standalone in a web browser or be embedded into your application. |
| [data-manager](https://github.com/heartexlabs/dm2) | React and JavaScript frontend for managing data. Includes the Label Studio Frontend. Relies on the label-studio server or a custom backend with the expected API methods. |
| [label-studio-converter](https://github.com/heartexlabs/label-studio-converter) | Encode labels in the format of your favorite machine learning library |
| [label-studio-transformers](https://github.com/heartexlabs/label-studio-transformers) | Transformers library connected and configured for use with Label Studio |
## Roadmap
Want to use **The Coolest Feature X** but Label Studio doesn't support it? Check out [our public roadmap](roadmap.md)!
## Citation
```tex
@misc{Label Studio,
title={{Label Studio}: Data labeling software},
url={https://github.com/heartexlabs/label-studio},
note={Open source software available from https://github.com/heartexlabs/label-studio},
author={
Maxim Tkachenko and
Mikhail Malyuk and
Andrey Holmanyuk and
Nikolai Liubimov},
year={2020-2022},
}
```
## License
This software is licensed under the [Apache 2.0 LICENSE](/LICENSE) © [Heartex](https://www.heartex.com/). 2020-2022
<img src="https://user-images.githubusercontent.com/12534576/192582529-cf628f58-abc5-479b-a0d4-8a3542a4b35e.png" title="Hey everyone!" width="180" />
%package help
Summary: Development documents and examples for label-studio
Provides: python3-label-studio-doc
%description help
<img src="https://user-images.githubusercontent.com/12534576/192582340-4c9e4401-1fe6-4dbb-95bb-fdbba5493f61.png"/>
  
[Website](https://labelstud.io/) • [Docs](https://labelstud.io/guide/) • [Twitter](https://twitter.com/labelstudiohq) • [Join Slack Community <img src="https://app.heartex.ai/docs/images/slack-mini.png" width="18px"/>](https://slack.labelstudio.heartex.com/?source=github-1)
## What is Label Studio?
<!-- <a href="https://labelstud.io/blog/release-130.html"><img src="https://github.com/heartexlabs/label-studio/raw/master/docs/themes/htx/source/images/release-130/LS-Hits-v1.3.png" align="right" /></a> -->
Label Studio is an open source data labeling tool. It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models.
- [Try out Label Studio](#try-out-label-studio)
- [What you get from Label Studio](#what-you-get-from-label-studio)
- [Included templates for labeling data in Label Studio](#included-templates-for-labeling-data-in-label-studio)
- [Set up machine learning models with Label Studio](#set-up-machine-learning-models-with-Label-Studio)
- [Integrate Label Studio with your existing tools](#integrate-label-studio-with-your-existing-tools)

Have a custom dataset? You can customize Label Studio to fit your needs. Read an [introductory blog post](https://towardsdatascience.com/introducing-label-studio-a-swiss-army-knife-of-data-labeling-140c1be92881) to learn more.
## Try out Label Studio
Install Label Studio locally, or deploy it in a cloud instance. [Or, sign up for a free trial of our Enterprise edition.](https://heartex.com/free-trial).
- [Install locally with Docker](#install-locally-with-docker)
- [Run with Docker Compose (Label Studio + Nginx + PostgreSQL)](#run-with-docker-compose)
- [Install locally with pip](#install-locally-with-pip)
- [Install locally with Anaconda](#install-locally-with-anaconda)
- [Install for local development](#install-for-local-development)
- [Deploy in a cloud instance](#deploy-in-a-cloud-instance)
### Install locally with Docker
Official Label Studio docker image is [here](https://hub.docker.com/r/heartexlabs/label-studio) and it can be downloaded with `docker pull`.
Run Label Studio in a Docker container and access it at `http://localhost:8080`.
```bash
docker pull heartexlabs/label-studio:latest
docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest
```
You can find all the generated assets, including SQLite3 database storage `label_studio.sqlite3` and uploaded files, in the `./mydata` directory.
#### Override default Docker install
You can override the default launch command by appending the new arguments:
```bash
docker run -it -p 8080:8080 -v $(pwd)/mydata:/label-studio/data heartexlabs/label-studio:latest label-studio --log-level DEBUG
```
#### Build a local image with Docker
If you want to build a local image, run:
```bash
docker build -t heartexlabs/label-studio:latest .
```
### Run with Docker Compose
Docker Compose script provides production-ready stack consisting of the following components:
- Label Studio
- [Nginx](https://www.nginx.com/) - proxy web server used to load various static data, including uploaded audio, images, etc.
- [PostgreSQL](https://www.postgresql.org/) - production-ready database that replaces less performant SQLite3.
To start using the app from `http://localhost` run this command:
```bash
docker-compose up
```
### Install locally with pip
```bash
# Requires Python >=3.7 <=3.9
pip install label-studio
# Start the server at http://localhost:8080
label-studio
```
### Install locally with Anaconda
```bash
conda create --name label-studio
conda activate label-studio
pip install label-studio
```
### Install for local development
You can run the latest Label Studio version locally without installing the package with pip.
```bash
# Install all package dependencies
pip install -e .
# Run database migrations
python label_studio/manage.py migrate
python label_studio/manage.py collectstatic
# Start the server in development mode at http://localhost:8080
python label_studio/manage.py runserver
```
### Deploy in a cloud instance
You can deploy Label Studio with one click in Heroku, Microsoft Azure, or Google Cloud Platform:
[<img src="https://www.herokucdn.com/deploy/button.svg" height="30px">](https://heroku.com/deploy?template=https://github.com/heartexlabs/label-studio/tree/heroku-persistent-pg)
[<img src="https://aka.ms/deploytoazurebutton" height="30px">](https://portal.azure.com/#create/Microsoft.Template/uri/https%3A%2F%2Fraw.githubusercontent.com%2Fheartexlabs%2Flabel-studio%2Fmaster%2Fazuredeploy.json)
[<img src="https://deploy.cloud.run/button.svg" height="30px">](https://deploy.cloud.run)
#### Apply frontend changes
The frontend part of Label Studio app lies in the `frontend/` folder and written in React JSX. In case you've made some changes there, the following commands should be run before building / starting the instance:
```
cd label_studio/frontend/
npm ci
npx webpack
cd ../..
python label_studio/manage.py collectstatic --no-input
```
### Troubleshoot installation
If you see any errors during installation, try to rerun the installation
```bash
pip install --ignore-installed label-studio
```
#### Install dependencies on Windows
To run Label Studio on Windows, download and install the following wheel packages from [Gohlke builds](https://www.lfd.uci.edu/~gohlke/pythonlibs) to ensure you're using the correct version of Python:
- [lxml](https://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml)
```bash
# Upgrade pip
pip install -U pip
# If you're running Win64 with Python 3.8, install the packages downloaded from Gohlke:
pip install lxml‑4.5.0‑cp38‑cp38‑win_amd64.whl
# Install label studio
pip install label-studio
```
#### Run test suite
```bash
pip install -r deploy/requirements-test.txt
cd label_studio
# postgres (assumes default postgres user,db,pass)
DJANGO_DB=default DJANGO_SETTINGS_MODULE=core.settings.label_studio python -m pytest -vv -n auto
# sqlite3
DJANGO_DB=sqlite DJANGO_SETTINGS_MODULE=core.settings.label_studio python -m pytest -vv -n auto
```
## What you get from Label Studio

- **Multi-user labeling** sign up and login, when you create an annotation it's tied to your account.
- **Multiple projects** to work on all your datasets in one instance.
- **Streamlined design** helps you focus on your task, not how to use the software.
- **Configurable label formats** let you customize the visual interface to meet your specific labeling needs.
- **Support for multiple data types** including images, audio, text, HTML, time-series, and video.
- **Import from files or from cloud storage** in Amazon AWS S3, Google Cloud Storage, or JSON, CSV, TSV, RAR, and ZIP archives.
- **Integration with machine learning models** so that you can visualize and compare predictions from different models and perform pre-labeling.
- **Embed it in your data pipeline** REST API makes it easy to make it a part of your pipeline
## Included templates for labeling data in Label Studio
Label Studio includes a variety of templates to help you label your data, or you can create your own using specifically designed configuration language. The most common templates and use cases for labeling include the following cases:
<img src="https://raw.githubusercontent.com/heartexlabs/label-studio/master/images/templates-categories.jpg" />
## Set up machine learning models with Label Studio
Connect your favorite machine learning model using the Label Studio Machine Learning SDK. Follow these steps:
1. Start your own machine learning backend server. See [more detailed instructions](https://github.com/heartexlabs/label-studio-ml-backend).
2. Connect Label Studio to the server on the model page found in project settings.
This lets you:
- **Pre-label** your data using model predictions.
- Do **online learning** and retrain your model while new annotations are being created.
- Do **active learning** by labeling only the most complex examples in your data.
## Integrate Label Studio with your existing tools
You can use Label Studio as an independent part of your machine learning workflow or integrate the frontend or backend into your existing tools.
* Use the [Label Studio Frontend](https://github.com/heartexlabs/label-studio-frontend) as a separate React library. See more in the [Frontend Library documentation](https://labelstud.io/guide/frontend.html).
## Ecosystem
| Project | Description |
|-|-|
| label-studio | Server, distributed as a pip package |
| [label-studio-frontend](https://github.com/heartexlabs/label-studio-frontend) | React and JavaScript frontend and can run standalone in a web browser or be embedded into your application. |
| [data-manager](https://github.com/heartexlabs/dm2) | React and JavaScript frontend for managing data. Includes the Label Studio Frontend. Relies on the label-studio server or a custom backend with the expected API methods. |
| [label-studio-converter](https://github.com/heartexlabs/label-studio-converter) | Encode labels in the format of your favorite machine learning library |
| [label-studio-transformers](https://github.com/heartexlabs/label-studio-transformers) | Transformers library connected and configured for use with Label Studio |
## Roadmap
Want to use **The Coolest Feature X** but Label Studio doesn't support it? Check out [our public roadmap](roadmap.md)!
## Citation
```tex
@misc{Label Studio,
title={{Label Studio}: Data labeling software},
url={https://github.com/heartexlabs/label-studio},
note={Open source software available from https://github.com/heartexlabs/label-studio},
author={
Maxim Tkachenko and
Mikhail Malyuk and
Andrey Holmanyuk and
Nikolai Liubimov},
year={2020-2022},
}
```
## License
This software is licensed under the [Apache 2.0 LICENSE](/LICENSE) © [Heartex](https://www.heartex.com/). 2020-2022
<img src="https://user-images.githubusercontent.com/12534576/192582529-cf628f58-abc5-479b-a0d4-8a3542a4b35e.png" title="Hey everyone!" width="180" />
%prep
%autosetup -n label-studio-1.7.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-label-studio -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 1.7.3-1
- Package Spec generated
|