1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
%global _empty_manifest_terminate_build 0
Name: python-labelme2coco
Version: 0.2.4
Release: 1
Summary: Convert labelme annotations into coco format in one step
License: MIT License
URL: https://github.com/fcakyon/labelme2coco
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ad/ee/d2b7186eeb04007794edf49f3105ce3e128add0cb9cbf0ebeb42638fd614/labelme2coco-0.2.4.tar.gz
BuildArch: noarch
Requires: python3-sahi
Requires: python3-jsonschema
%description
<div align="center">
<h1>
labelme2coco
</h1>
<a href="https://pepy.tech/project/labelme2coco"><img src="https://pepy.tech/badge/labelme2coco" alt="downloads"></a>
<a href="https://badge.fury.io/py/labelme2coco"><img src="https://badge.fury.io/py/labelme2coco.svg" alt="pypi version"></a>
<a href="https://github.com/fcakyon/labelme2coco/actions/workflows/ci.yml"><img src="https://github.com/fcakyon/labelme2coco/workflows/CI/badge.svg" alt="ci"></a>
<a href="https://twitter.com/fcakyon"><img src="https://img.shields.io/badge/twitter-fcakyon_-blue?logo=twitter&style=flat" alt="fcakyon twitter">
<h4>
A lightweight package for converting your <a href="https://github.com/wkentaro/labelme">labelme</a> annotations into COCO object detection format.
</h4>
<h4>
<img width="700" alt="teaser" src="https://user-images.githubusercontent.com/34196005/148746639-9a7b9c08-2156-42ca-abae-a4e6aad095dd.gif">
</h4>
</div>
## Convert LabelMe annotations to COCO format in one step
[labelme](https://github.com/wkentaro/labelme) is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats.
However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.
You can use this package to convert labelme annotations to COCO format.
## Getting started
### Installation
```
pip install -U labelme2coco
```
### Basic Usage
```python
labelme2coco path/to/labelme/dir
```
```python
labelme2coco path/to/labelme/dir --train_split_rate 0.85
```
### Advanced Usage
```python
# import package
import labelme2coco
# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"
# set export dir
export_dir = "tests/data/"
# set train split rate
train_split_rate = 0.85
# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate)
```
```python
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json
# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"
# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"
# set path for coco json to be saved
export_dir = "tests/data/"
# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder)
# export train coco json
save_json(train_coco.json, export_dir+"train.json")
# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories)
# export val coco json
save_json(val_coco.json, export_dir+"val.json")
```
%package -n python3-labelme2coco
Summary: Convert labelme annotations into coco format in one step
Provides: python-labelme2coco
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-labelme2coco
<div align="center">
<h1>
labelme2coco
</h1>
<a href="https://pepy.tech/project/labelme2coco"><img src="https://pepy.tech/badge/labelme2coco" alt="downloads"></a>
<a href="https://badge.fury.io/py/labelme2coco"><img src="https://badge.fury.io/py/labelme2coco.svg" alt="pypi version"></a>
<a href="https://github.com/fcakyon/labelme2coco/actions/workflows/ci.yml"><img src="https://github.com/fcakyon/labelme2coco/workflows/CI/badge.svg" alt="ci"></a>
<a href="https://twitter.com/fcakyon"><img src="https://img.shields.io/badge/twitter-fcakyon_-blue?logo=twitter&style=flat" alt="fcakyon twitter">
<h4>
A lightweight package for converting your <a href="https://github.com/wkentaro/labelme">labelme</a> annotations into COCO object detection format.
</h4>
<h4>
<img width="700" alt="teaser" src="https://user-images.githubusercontent.com/34196005/148746639-9a7b9c08-2156-42ca-abae-a4e6aad095dd.gif">
</h4>
</div>
## Convert LabelMe annotations to COCO format in one step
[labelme](https://github.com/wkentaro/labelme) is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats.
However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.
You can use this package to convert labelme annotations to COCO format.
## Getting started
### Installation
```
pip install -U labelme2coco
```
### Basic Usage
```python
labelme2coco path/to/labelme/dir
```
```python
labelme2coco path/to/labelme/dir --train_split_rate 0.85
```
### Advanced Usage
```python
# import package
import labelme2coco
# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"
# set export dir
export_dir = "tests/data/"
# set train split rate
train_split_rate = 0.85
# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate)
```
```python
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json
# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"
# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"
# set path for coco json to be saved
export_dir = "tests/data/"
# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder)
# export train coco json
save_json(train_coco.json, export_dir+"train.json")
# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories)
# export val coco json
save_json(val_coco.json, export_dir+"val.json")
```
%package help
Summary: Development documents and examples for labelme2coco
Provides: python3-labelme2coco-doc
%description help
<div align="center">
<h1>
labelme2coco
</h1>
<a href="https://pepy.tech/project/labelme2coco"><img src="https://pepy.tech/badge/labelme2coco" alt="downloads"></a>
<a href="https://badge.fury.io/py/labelme2coco"><img src="https://badge.fury.io/py/labelme2coco.svg" alt="pypi version"></a>
<a href="https://github.com/fcakyon/labelme2coco/actions/workflows/ci.yml"><img src="https://github.com/fcakyon/labelme2coco/workflows/CI/badge.svg" alt="ci"></a>
<a href="https://twitter.com/fcakyon"><img src="https://img.shields.io/badge/twitter-fcakyon_-blue?logo=twitter&style=flat" alt="fcakyon twitter">
<h4>
A lightweight package for converting your <a href="https://github.com/wkentaro/labelme">labelme</a> annotations into COCO object detection format.
</h4>
<h4>
<img width="700" alt="teaser" src="https://user-images.githubusercontent.com/34196005/148746639-9a7b9c08-2156-42ca-abae-a4e6aad095dd.gif">
</h4>
</div>
## Convert LabelMe annotations to COCO format in one step
[labelme](https://github.com/wkentaro/labelme) is a widely used is a graphical image annotation tool that supports classification, segmentation, instance segmentation and object detection formats.
However, widely used frameworks/models such as Yolact/Solo, Detectron, MMDetection etc. requires COCO formatted annotations.
You can use this package to convert labelme annotations to COCO format.
## Getting started
### Installation
```
pip install -U labelme2coco
```
### Basic Usage
```python
labelme2coco path/to/labelme/dir
```
```python
labelme2coco path/to/labelme/dir --train_split_rate 0.85
```
### Advanced Usage
```python
# import package
import labelme2coco
# set directory that contains labelme annotations and image files
labelme_folder = "tests/data/labelme_annot"
# set export dir
export_dir = "tests/data/"
# set train split rate
train_split_rate = 0.85
# convert labelme annotations to coco
labelme2coco.convert(labelme_folder, export_dir, train_split_rate)
```
```python
# import functions
from labelme2coco import get_coco_from_labelme_folder, save_json
# set labelme training data directory
labelme_train_folder = "tests/data/labelme_annot"
# set labelme validation data directory
labelme_val_folder = "tests/data/labelme_annot"
# set path for coco json to be saved
export_dir = "tests/data/"
# create train coco object
train_coco = get_coco_from_labelme_folder(labelme_train_folder)
# export train coco json
save_json(train_coco.json, export_dir+"train.json")
# create val coco object
val_coco = get_coco_from_labelme_folder(labelme_val_folder, coco_category_list=train_coco.json_categories)
# export val coco json
save_json(val_coco.json, export_dir+"val.json")
```
%prep
%autosetup -n labelme2coco-0.2.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-labelme2coco -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.4-1
- Package Spec generated
|