summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-05 15:02:23 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-05 15:02:23 +0000
commit9ad6816d5d408d1dfa062d6f235d659e9d4517d3 (patch)
tree27641fbc6f65c70b1d9bc7616810913d7bd64086
parent71192e6f18998bc25c0564bd9581e6408fb0759c (diff)
automatic import of python-layoutparseropeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-layoutparser.spec320
-rw-r--r--sources1
3 files changed, 322 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..c4b118a 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/layoutparser-0.3.4.tar.gz
diff --git a/python-layoutparser.spec b/python-layoutparser.spec
new file mode 100644
index 0000000..2e2e2e5
--- /dev/null
+++ b/python-layoutparser.spec
@@ -0,0 +1,320 @@
+%global _empty_manifest_terminate_build 0
+Name: python-layoutparser
+Version: 0.3.4
+Release: 1
+Summary: A unified toolkit for Deep Learning Based Document Image Analysis
+License: Apache-2.0
+URL: https://github.com/Layout-Parser/layout-parser
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/16/3ff7629fd684047ad9779394aadc7b612c5ae91e41a27f1bad1469e23f05/layoutparser-0.3.4.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-opencv-python
+Requires: python3-scipy
+Requires: python3-pandas
+Requires: python3-pillow
+Requires: python3-pyyaml
+Requires: python3-iopath
+Requires: python3-pdfplumber
+Requires: python3-pdf2image
+Requires: python3-torch
+Requires: python3-torchvision
+Requires: python3-effdet
+Requires: python3-google-cloud-vision
+Requires: python3-torch
+Requires: python3-torchvision
+Requires: python3-effdet
+Requires: python3-google-cloud-vision
+Requires: python3-pytesseract
+Requires: python3-paddlepaddle
+Requires: python3-pytesseract
+
+%description
+## What is LayoutParser
+![Example Usage](https://github.com/Layout-Parser/layout-parser/raw/main/.github/example.png)
+LayoutParser aims to provide a wide range of tools that aims to streamline Document Image Analysis (DIA) tasks. Please check the LayoutParser [demo video](https://youtu.be/8yA5xB4Dg8c) (1 min) or [full talk](https://www.youtube.com/watch?v=YG0qepPgyGY) (15 min) for details. And here are some key features:
+- LayoutParser provides a rich repository of deep learning models for layout detection as well as a set of unified APIs for using them. For example,
+ <details>
+ <summary>Perform DL layout detection in 4 lines of code</summary>
+ ```python
+ import layoutparser as lp
+ model = lp.AutoLayoutModel('lp://EfficientDete/PubLayNet')
+ # image = Image.open("path/to/image")
+ layout = model.detect(image)
+ ```
+ </details>
+- LayoutParser comes with a set of layout data structures with carefully designed APIs that are optimized for document image analysis tasks. For example,
+ <details>
+ <summary>Selecting layout/textual elements in the left column of a page</summary>
+ ```python
+ image_width = image.size[0]
+ left_column = lp.Interval(0, image_width/2, axis='x')
+ layout.filter_by(left_column, center=True) # select objects in the left column
+ ```
+ </details>
+ <details>
+ <summary>Performing OCR for each detected Layout Region</summary>
+ ```python
+ ocr_agent = lp.TesseractAgent()
+ for layout_region in layout:
+ image_segment = layout_region.crop(image)
+ text = ocr_agent.detect(image_segment)
+ ```
+ </details>
+ <details>
+ <summary>Flexible APIs for visualizing the detected layouts</summary>
+ ```python
+ lp.draw_box(image, layout, box_width=1, show_element_id=True, box_alpha=0.25)
+ ```
+ </details>
+ </details>
+ <details>
+ <summary>Loading layout data stored in json, csv, and even PDFs</summary>
+ ```python
+ layout = lp.load_json("path/to/json")
+ layout = lp.load_csv("path/to/csv")
+ pdf_layout = lp.load_pdf("path/to/pdf")
+ ```
+ </details>
+- LayoutParser is also a open platform that enables the sharing of layout detection models and DIA pipelines among the community.
+ <details>
+ <summary><a href="https://layout-parser.github.io/platform/">Check</a> the LayoutParser open platform</summary>
+ </details>
+ <details>
+ <summary><a href="https://github.com/Layout-Parser/platform">Submit</a> your models/pipelines to LayoutParser</summary>
+ </details>
+## Installation
+After several major updates, layoutparser provides various functionalities and deep learning models from different backends. But it still easy to install layoutparser, and we designed the installation method in a way such that you can choose to install only the needed dependencies for your project:
+```bash
+pip install layoutparser # Install the base layoutparser library with
+pip install "layoutparser[layoutmodels]" # Install DL layout model toolkit
+pip install "layoutparser[ocr]" # Install OCR toolkit
+```
+Extra steps are needed if you want to use Detectron2-based models. Please check [installation.md](installation.md) for additional details on layoutparser installation.
+## Examples
+We provide a series of examples for to help you start using the layout parser library:
+1. [Table OCR and Results Parsing](https://github.com/Layout-Parser/layout-parser/blob/main/examples/OCR%20Tables%20and%20Parse%20the%20Output.ipynb): `layoutparser` can be used for conveniently OCR documents and convert the output in to structured data.
+2. [Deep Layout Parsing Example](https://github.com/Layout-Parser/layout-parser/blob/main/examples/Deep%20Layout%20Parsing.ipynb): With the help of Deep Learning, `layoutparser` supports the analysis very complex documents and processing of the hierarchical structure in the layouts.
+## Contributing
+We encourage you to contribute to Layout Parser! Please check out the [Contributing guidelines](.github/CONTRIBUTING.md) for guidelines about how to proceed. Join us!
+## Citing `layoutparser`
+If you find `layoutparser` helpful to your work, please consider citing our tool and [paper](https://arxiv.org/pdf/2103.15348.pdf) using the following BibTeX entry.
+```
+@article{shen2021layoutparser,
+ title={LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis},
+ author={Shen, Zejiang and Zhang, Ruochen and Dell, Melissa and Lee, Benjamin Charles Germain and Carlson, Jacob and Li, Weining},
+ journal={arXiv preprint arXiv:2103.15348},
+ year={2021}
+}
+```
+
+%package -n python3-layoutparser
+Summary: A unified toolkit for Deep Learning Based Document Image Analysis
+Provides: python-layoutparser
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-layoutparser
+## What is LayoutParser
+![Example Usage](https://github.com/Layout-Parser/layout-parser/raw/main/.github/example.png)
+LayoutParser aims to provide a wide range of tools that aims to streamline Document Image Analysis (DIA) tasks. Please check the LayoutParser [demo video](https://youtu.be/8yA5xB4Dg8c) (1 min) or [full talk](https://www.youtube.com/watch?v=YG0qepPgyGY) (15 min) for details. And here are some key features:
+- LayoutParser provides a rich repository of deep learning models for layout detection as well as a set of unified APIs for using them. For example,
+ <details>
+ <summary>Perform DL layout detection in 4 lines of code</summary>
+ ```python
+ import layoutparser as lp
+ model = lp.AutoLayoutModel('lp://EfficientDete/PubLayNet')
+ # image = Image.open("path/to/image")
+ layout = model.detect(image)
+ ```
+ </details>
+- LayoutParser comes with a set of layout data structures with carefully designed APIs that are optimized for document image analysis tasks. For example,
+ <details>
+ <summary>Selecting layout/textual elements in the left column of a page</summary>
+ ```python
+ image_width = image.size[0]
+ left_column = lp.Interval(0, image_width/2, axis='x')
+ layout.filter_by(left_column, center=True) # select objects in the left column
+ ```
+ </details>
+ <details>
+ <summary>Performing OCR for each detected Layout Region</summary>
+ ```python
+ ocr_agent = lp.TesseractAgent()
+ for layout_region in layout:
+ image_segment = layout_region.crop(image)
+ text = ocr_agent.detect(image_segment)
+ ```
+ </details>
+ <details>
+ <summary>Flexible APIs for visualizing the detected layouts</summary>
+ ```python
+ lp.draw_box(image, layout, box_width=1, show_element_id=True, box_alpha=0.25)
+ ```
+ </details>
+ </details>
+ <details>
+ <summary>Loading layout data stored in json, csv, and even PDFs</summary>
+ ```python
+ layout = lp.load_json("path/to/json")
+ layout = lp.load_csv("path/to/csv")
+ pdf_layout = lp.load_pdf("path/to/pdf")
+ ```
+ </details>
+- LayoutParser is also a open platform that enables the sharing of layout detection models and DIA pipelines among the community.
+ <details>
+ <summary><a href="https://layout-parser.github.io/platform/">Check</a> the LayoutParser open platform</summary>
+ </details>
+ <details>
+ <summary><a href="https://github.com/Layout-Parser/platform">Submit</a> your models/pipelines to LayoutParser</summary>
+ </details>
+## Installation
+After several major updates, layoutparser provides various functionalities and deep learning models from different backends. But it still easy to install layoutparser, and we designed the installation method in a way such that you can choose to install only the needed dependencies for your project:
+```bash
+pip install layoutparser # Install the base layoutparser library with
+pip install "layoutparser[layoutmodels]" # Install DL layout model toolkit
+pip install "layoutparser[ocr]" # Install OCR toolkit
+```
+Extra steps are needed if you want to use Detectron2-based models. Please check [installation.md](installation.md) for additional details on layoutparser installation.
+## Examples
+We provide a series of examples for to help you start using the layout parser library:
+1. [Table OCR and Results Parsing](https://github.com/Layout-Parser/layout-parser/blob/main/examples/OCR%20Tables%20and%20Parse%20the%20Output.ipynb): `layoutparser` can be used for conveniently OCR documents and convert the output in to structured data.
+2. [Deep Layout Parsing Example](https://github.com/Layout-Parser/layout-parser/blob/main/examples/Deep%20Layout%20Parsing.ipynb): With the help of Deep Learning, `layoutparser` supports the analysis very complex documents and processing of the hierarchical structure in the layouts.
+## Contributing
+We encourage you to contribute to Layout Parser! Please check out the [Contributing guidelines](.github/CONTRIBUTING.md) for guidelines about how to proceed. Join us!
+## Citing `layoutparser`
+If you find `layoutparser` helpful to your work, please consider citing our tool and [paper](https://arxiv.org/pdf/2103.15348.pdf) using the following BibTeX entry.
+```
+@article{shen2021layoutparser,
+ title={LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis},
+ author={Shen, Zejiang and Zhang, Ruochen and Dell, Melissa and Lee, Benjamin Charles Germain and Carlson, Jacob and Li, Weining},
+ journal={arXiv preprint arXiv:2103.15348},
+ year={2021}
+}
+```
+
+%package help
+Summary: Development documents and examples for layoutparser
+Provides: python3-layoutparser-doc
+%description help
+## What is LayoutParser
+![Example Usage](https://github.com/Layout-Parser/layout-parser/raw/main/.github/example.png)
+LayoutParser aims to provide a wide range of tools that aims to streamline Document Image Analysis (DIA) tasks. Please check the LayoutParser [demo video](https://youtu.be/8yA5xB4Dg8c) (1 min) or [full talk](https://www.youtube.com/watch?v=YG0qepPgyGY) (15 min) for details. And here are some key features:
+- LayoutParser provides a rich repository of deep learning models for layout detection as well as a set of unified APIs for using them. For example,
+ <details>
+ <summary>Perform DL layout detection in 4 lines of code</summary>
+ ```python
+ import layoutparser as lp
+ model = lp.AutoLayoutModel('lp://EfficientDete/PubLayNet')
+ # image = Image.open("path/to/image")
+ layout = model.detect(image)
+ ```
+ </details>
+- LayoutParser comes with a set of layout data structures with carefully designed APIs that are optimized for document image analysis tasks. For example,
+ <details>
+ <summary>Selecting layout/textual elements in the left column of a page</summary>
+ ```python
+ image_width = image.size[0]
+ left_column = lp.Interval(0, image_width/2, axis='x')
+ layout.filter_by(left_column, center=True) # select objects in the left column
+ ```
+ </details>
+ <details>
+ <summary>Performing OCR for each detected Layout Region</summary>
+ ```python
+ ocr_agent = lp.TesseractAgent()
+ for layout_region in layout:
+ image_segment = layout_region.crop(image)
+ text = ocr_agent.detect(image_segment)
+ ```
+ </details>
+ <details>
+ <summary>Flexible APIs for visualizing the detected layouts</summary>
+ ```python
+ lp.draw_box(image, layout, box_width=1, show_element_id=True, box_alpha=0.25)
+ ```
+ </details>
+ </details>
+ <details>
+ <summary>Loading layout data stored in json, csv, and even PDFs</summary>
+ ```python
+ layout = lp.load_json("path/to/json")
+ layout = lp.load_csv("path/to/csv")
+ pdf_layout = lp.load_pdf("path/to/pdf")
+ ```
+ </details>
+- LayoutParser is also a open platform that enables the sharing of layout detection models and DIA pipelines among the community.
+ <details>
+ <summary><a href="https://layout-parser.github.io/platform/">Check</a> the LayoutParser open platform</summary>
+ </details>
+ <details>
+ <summary><a href="https://github.com/Layout-Parser/platform">Submit</a> your models/pipelines to LayoutParser</summary>
+ </details>
+## Installation
+After several major updates, layoutparser provides various functionalities and deep learning models from different backends. But it still easy to install layoutparser, and we designed the installation method in a way such that you can choose to install only the needed dependencies for your project:
+```bash
+pip install layoutparser # Install the base layoutparser library with
+pip install "layoutparser[layoutmodels]" # Install DL layout model toolkit
+pip install "layoutparser[ocr]" # Install OCR toolkit
+```
+Extra steps are needed if you want to use Detectron2-based models. Please check [installation.md](installation.md) for additional details on layoutparser installation.
+## Examples
+We provide a series of examples for to help you start using the layout parser library:
+1. [Table OCR and Results Parsing](https://github.com/Layout-Parser/layout-parser/blob/main/examples/OCR%20Tables%20and%20Parse%20the%20Output.ipynb): `layoutparser` can be used for conveniently OCR documents and convert the output in to structured data.
+2. [Deep Layout Parsing Example](https://github.com/Layout-Parser/layout-parser/blob/main/examples/Deep%20Layout%20Parsing.ipynb): With the help of Deep Learning, `layoutparser` supports the analysis very complex documents and processing of the hierarchical structure in the layouts.
+## Contributing
+We encourage you to contribute to Layout Parser! Please check out the [Contributing guidelines](.github/CONTRIBUTING.md) for guidelines about how to proceed. Join us!
+## Citing `layoutparser`
+If you find `layoutparser` helpful to your work, please consider citing our tool and [paper](https://arxiv.org/pdf/2103.15348.pdf) using the following BibTeX entry.
+```
+@article{shen2021layoutparser,
+ title={LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis},
+ author={Shen, Zejiang and Zhang, Ruochen and Dell, Melissa and Lee, Benjamin Charles Germain and Carlson, Jacob and Li, Weining},
+ journal={arXiv preprint arXiv:2103.15348},
+ year={2021}
+}
+```
+
+%prep
+%autosetup -n layoutparser-0.3.4
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-layoutparser -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.4-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..67aa8f9
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+c020dd8d304da93b56ade8be594bdcf6 layoutparser-0.3.4.tar.gz