1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
|
%global _empty_manifest_terminate_build 0
Name: python-LFPykit
Version: 0.5.1
Release: 1
Summary: Electrostatic models for multicompartment neuron models
License: GNU General Public License (GPL)
URL: https://github.com/LFPy/LFPykit
Source0: https://mirrors.aliyun.com/pypi/web/packages/b4/e0/b5935801a38839b177267f53cf6781941e36d8f832e06612773fdf89504e/LFPykit-0.5.1.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-meautility
Requires: python3-sphinx
Requires: python3-numpydoc
Requires: python3-sphinx-rtd-theme
Requires: python3-recommonmark
Requires: python3-pytest
Requires: python3-sympy
%description
# LFPykit
This Python module contain freestanding implementations of electrostatic
forward models incorporated in LFPy
(https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).
The aim of the `LFPykit` module is to provide electrostatic models
in a manner that facilitates forward-model predictions of extracellular
potentials and related measures from multicompartment neuron models, but
without explicit dependencies on neural simulation software such as
NEURON (https://neuron.yale.edu, https://github.com/neuronsimulator/nrn),
Arbor (https://arbor.readthedocs.io, https://github.com/arbor-sim/arbor),
or even LFPy.
The `LFPykit` module can then be more easily incorporated with
these simulators, or in various projects that utilize them such as
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy).
BMTK (https://alleninstitute.github.io/bmtk/, https://github.com/AllenInstitute/bmtk),
etc.
Its main functionality is providing class methods that return two-dimensional
linear transformation matrices **M**
between transmembrane currents
**I** of multicompartment neuron models and some
measurement **Y** given by **Y**=**MI**.
The presently incorporated volume conductor models have been incorporated in
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy),
as described in various papers and books:
1. Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT
(2014) LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front.
Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041
2. Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling of Neural
Network Activity: Computing LFP, ECoG, EEG, and MEG
Signals With LFPy 2.0. Front. Neuroinform. 12:92.
doi: 10.3389/fninf.2018.00092
3. Ness, T. V., Chintaluri, C., Potworowski, J., Leski, S., Glabska,
H., Wójcik, D. K., et al. (2015). Modelling and analysis of electrical
potentials recorded in microelectrode arrays (MEAs).
Neuroinformatics 13:403–426. doi: 10.1007/s12021-015-9265-6
4. Nunez and Srinivasan, Oxford University Press, 2006
5. Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK
(2017). Corrected Four-sphere Head Model for EEG Signals. Front. Hum.
Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490
## Build Status
[](https://zenodo.org/badge/latestdoi/288660131)
[](https://coveralls.io/github/LFPy/LFPykit?branch=master)
[](https://lfpykit.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/LFPy/LFPykit/actions/workflows/flake8.yml)
[](https://github.com/LFPy/LFPykit/actions?query=workflow%3A%22Python+application%22)
[](https://pypi.org/project/LFPykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://mybinder.org/v2/gh/LFPy/LFPykit.git/master)
[](http://www.gnu.org/licenses/gpl-3.0.html)
## Features
`LFPykit` presently incorporates different electrostatic forward models for extracellular potentials
and magnetic signals that has been derived using volume conductor theory.
In volume-conductor theory the extracellular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents of neurons.
Given the same transmembrane currents, the contributions to the magnetic field recorded both inside and outside the brain can also be computed.
The module presently incorporates different classes.
To represent the geometry of a multicompartment neuron model we have:
* `CellGeometry`:
Base class representing a multicompartment neuron geometry in terms
of segment x-, y-, z-coordinates and diameter.
Different classes built to map transmembrane currents of `CellGeometry` like instances
to different measurement modalities:
* `LinearModel`:
Base class representing a generic forward model
for subclassing
* `CurrentDipoleMoment`:
Class for predicting current dipole moments
* `PointSourcePotential`:
Class for predicting extracellular potentials
assuming point sources and point contacts
* `LineSourcePotential`:
Class for predicting extracellular potentials assuming
line sourcers and point contacts
* `RecExtElectrode`:
Class for simulations of extracellular potentials
* `RecMEAElectrode`:
Class for simulations of in vitro (slice) extracellular
potentials
* `OneSphereVolumeConductor`:
For computing extracellular potentials within
sand outside a homogeneous sphere
* `LaminarCurrentSourceDensity`:
For computing the 'ground truth' current source density across
cylindrical volumes aligned with the z-axis
* `VolumetricCurrentSourceDensity`:
For computing the 'ground truth' current source density on regularly
spaced 3D grid
Different classes built to map current dipole moments (i.e., computed using `CurrentDipoleMoment`)
to extracellular measurements:
* `eegmegcalc.FourSphereVolumeConductor`:
For computing extracellular potentials in
4-sphere head model (brain, CSF, skull, scalp)
from current dipole moment
* `eegmegcalc.InfiniteVolumeConductor`:
To compute extracellular potentials in infinite volume conductor
from current dipole moment
* `eegmegcalc.InfiniteHomogeneousVolCondMEG`:
Class for computing magnetic field from current dipole moments under the assumption
of infinite homogeneous volume conductor model
* `eegmegcalc.SphericallySymmetricVolCondMEG`:
Class for computing magnetic field from current dipole moments under the assumption
of a spherically symmetric volume conductor model
* `eegmegcalc.NYHeadModel`:
Class for computing extracellular potentials in detailed head volume
conductor model (https://www.parralab.org/nyhead)
Each class (except `CellGeometry`) should have a public method `get_transformation_matrix()`
that returns the linear map between the transmembrane currents or current dipole moment
and corresponding measurements (see Usage below)
## Usage
A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source in a linear, isotropic and homogeneous volume conductor,
computing the extracellular potential in ten different locations
alongside the cell geometry:
>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, PointSourcePotential
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg), # (µm)
y=np.array([[0.] * 2] * n_seg), # (µm)
z=np.array([[10. * x, 10. * (x + 1)]
for x in range(n_seg)]), # (µm)
d=np.array([1.] * n_seg)) # (µm)
>>> # instantiate class `PointSourcePotential`:
>>> psp = PointSourcePotential(cell,
x=np.ones(10) * 10,
y=np.zeros(10),
z=np.arange(10) * 10,
sigma=0.3)
>>> # get linear response matrix mapping currents to measurements
>>> M = psp.get_transformation_matrix()
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
[0., 0.],
[1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M @ imem
>>> V_ex
array([[-0.01387397, 0.01387397],
[-0.00901154, 0.00901154],
[ 0.00901154, -0.00901154],
[ 0.01387397, -0.01387397],
[ 0.00742668, -0.00742668],
[ 0.00409718, -0.00409718],
[ 0.00254212, -0.00254212],
[ 0.00172082, -0.00172082],
[ 0.00123933, -0.00123933],
[ 0.00093413, -0.00093413]])
A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source,
computing the current dipole moment and computing the potential in ten different
remote locations away from the cell geometry:
>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, CurrentDipoleMoment, \
>>> eegmegcalc
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg), # (µm)
y=np.array([[0.] * 2] * n_seg), # (µm)
z=np.array([[10. * x, 10. * (x + 1)]
for x in range(n_seg)]), # (µm)
d=np.array([1.] * n_seg)) # (µm)
>>> # instantiate class `CurrentDipoleMoment`:
>>> cdp = CurrentDipoleMoment(cell)
>>> M_I_to_P = cdp.get_transformation_matrix()
>>> # instantiate class `eegmegcalc.InfiniteVolumeConductor` and map dipole moment to
>>> # extracellular potential at measurement sites
>>> ivc = eegmegcalc.InfiniteVolumeConductor(sigma=0.3)
>>> # compute linear response matrix between dipole moment and
>>> # extracellular potential
>>> M_P_to_V = ivc.get_transformation_matrix(np.c_[np.ones(10) * 1000,
np.zeros(10),
np.arange(10) * 100])
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
[0., 0.],
[1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M_P_to_V @ M_I_to_P @ imem
>>> V_ex
array([[ 0.00000000e+00, 0.00000000e+00],
[ 5.22657054e-07, -5.22657054e-07],
[ 1.00041193e-06, -1.00041193e-06],
[ 1.39855769e-06, -1.39855769e-06],
[ 1.69852477e-06, -1.69852477e-06],
[ 1.89803345e-06, -1.89803345e-06],
[ 2.00697409e-06, -2.00697409e-06],
[ 2.04182029e-06, -2.04182029e-06],
[ 2.02079888e-06, -2.02079888e-06],
[ 1.96075587e-06, -1.96075587e-06]])
## Physical units
Notes on physical units used in `LFPykit`:
- There are no explicit checks for physical units
- Transmembrane currents are assumed to be in units of (nA)
- Spatial information is assumed to be in units of (µm)
- Voltages are assumed to be in units of (mV)
- Extracellular conductivities are assumed to be in units of (S/m)
- current dipole moments are assumed to be in units of (nA µm)
- Magnetic fields are assumed to be in units of (nA/µm)
## Dimensionality
- Transmembrane currents are represented by arrays with shape `(n_seg, n_timesteps)`
where `n_seg` is the number of segments of the neuron model.
- Current dipole moments are represented by arrays with shape `(3, n_timesteps)`
- Response matrices **M** have shape `(n_points, input.shape[0])` where `n_points` is
for instance the number of extracellular recording sites and `input.shape[0]`
the first dimension of the input; that is, the number of segments in case of
transmembrane currents or 3 in case of current dipole moments.
- predicted signals (except magnetic fields using `eegmegcalc.InfiniteHomogeneousVolCondMEG` or
`eegmegcalc.SphericallySymmetricVolCondMEG`) have shape `(n_points, n_timesteps)`
## Documentation
The online Documentation of `LFPykit` can be found here:
https://lfpykit.readthedocs.io/en/latest
## Dependencies
`LFPykit` is implemented in Python and is written (and continuously tested) for `Python >= 3.7`.
The main `LFPykit` module depends on `numpy`, `scipy` and `MEAutility` (https://github.com/alejoe91/MEAutility, https://meautility.readthedocs.io/en/latest/).
Running all unit tests and example files may in addition require `py.test`, `matplotlib`,
`neuron` (https://www.neuron.yale.edu),
(`arbor` coming) and
`LFPy` (https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).
## Installation
### From development sources (https://github.com/LFPy/LFPykit)
Install the current development version on https://GitHub.com using `git` (https://git-scm.com):
$ git clone https://github.com/LFPy/LFPykit.git
$ cd LFPykit
$ python setup.py install # --user optional
or using `pip`:
$ pip install . # --user optional
For active development, link the repository location
$ python setup.py develop # --user optional
### Installation of stable releases on PyPI.org (https://www.pypi.org)
Installing from the Python Package Index (https://www.pypi.org/project/lfpykit):
$ pip install lfpykit # --user optional
To upgrade the installation using pip:
$ pip install --upgrade --no-deps lfpykit
### Installation of stable releases on conda-forge (https://conda-forge.org)
Installing `lfpykit` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:
$ conda config --add channels conda-forge
Once the `conda-forge` channel has been enabled, `lfpykit` can be installed with:
$ conda install lfpykit
It is possible to list all of the versions of `lfpykit` available on your platform with:
$ conda search lfpykit --channel conda-forge
%package -n python3-LFPykit
Summary: Electrostatic models for multicompartment neuron models
Provides: python-LFPykit
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-LFPykit
# LFPykit
This Python module contain freestanding implementations of electrostatic
forward models incorporated in LFPy
(https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).
The aim of the `LFPykit` module is to provide electrostatic models
in a manner that facilitates forward-model predictions of extracellular
potentials and related measures from multicompartment neuron models, but
without explicit dependencies on neural simulation software such as
NEURON (https://neuron.yale.edu, https://github.com/neuronsimulator/nrn),
Arbor (https://arbor.readthedocs.io, https://github.com/arbor-sim/arbor),
or even LFPy.
The `LFPykit` module can then be more easily incorporated with
these simulators, or in various projects that utilize them such as
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy).
BMTK (https://alleninstitute.github.io/bmtk/, https://github.com/AllenInstitute/bmtk),
etc.
Its main functionality is providing class methods that return two-dimensional
linear transformation matrices **M**
between transmembrane currents
**I** of multicompartment neuron models and some
measurement **Y** given by **Y**=**MI**.
The presently incorporated volume conductor models have been incorporated in
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy),
as described in various papers and books:
1. Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT
(2014) LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front.
Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041
2. Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling of Neural
Network Activity: Computing LFP, ECoG, EEG, and MEG
Signals With LFPy 2.0. Front. Neuroinform. 12:92.
doi: 10.3389/fninf.2018.00092
3. Ness, T. V., Chintaluri, C., Potworowski, J., Leski, S., Glabska,
H., Wójcik, D. K., et al. (2015). Modelling and analysis of electrical
potentials recorded in microelectrode arrays (MEAs).
Neuroinformatics 13:403–426. doi: 10.1007/s12021-015-9265-6
4. Nunez and Srinivasan, Oxford University Press, 2006
5. Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK
(2017). Corrected Four-sphere Head Model for EEG Signals. Front. Hum.
Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490
## Build Status
[](https://zenodo.org/badge/latestdoi/288660131)
[](https://coveralls.io/github/LFPy/LFPykit?branch=master)
[](https://lfpykit.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/LFPy/LFPykit/actions/workflows/flake8.yml)
[](https://github.com/LFPy/LFPykit/actions?query=workflow%3A%22Python+application%22)
[](https://pypi.org/project/LFPykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://mybinder.org/v2/gh/LFPy/LFPykit.git/master)
[](http://www.gnu.org/licenses/gpl-3.0.html)
## Features
`LFPykit` presently incorporates different electrostatic forward models for extracellular potentials
and magnetic signals that has been derived using volume conductor theory.
In volume-conductor theory the extracellular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents of neurons.
Given the same transmembrane currents, the contributions to the magnetic field recorded both inside and outside the brain can also be computed.
The module presently incorporates different classes.
To represent the geometry of a multicompartment neuron model we have:
* `CellGeometry`:
Base class representing a multicompartment neuron geometry in terms
of segment x-, y-, z-coordinates and diameter.
Different classes built to map transmembrane currents of `CellGeometry` like instances
to different measurement modalities:
* `LinearModel`:
Base class representing a generic forward model
for subclassing
* `CurrentDipoleMoment`:
Class for predicting current dipole moments
* `PointSourcePotential`:
Class for predicting extracellular potentials
assuming point sources and point contacts
* `LineSourcePotential`:
Class for predicting extracellular potentials assuming
line sourcers and point contacts
* `RecExtElectrode`:
Class for simulations of extracellular potentials
* `RecMEAElectrode`:
Class for simulations of in vitro (slice) extracellular
potentials
* `OneSphereVolumeConductor`:
For computing extracellular potentials within
sand outside a homogeneous sphere
* `LaminarCurrentSourceDensity`:
For computing the 'ground truth' current source density across
cylindrical volumes aligned with the z-axis
* `VolumetricCurrentSourceDensity`:
For computing the 'ground truth' current source density on regularly
spaced 3D grid
Different classes built to map current dipole moments (i.e., computed using `CurrentDipoleMoment`)
to extracellular measurements:
* `eegmegcalc.FourSphereVolumeConductor`:
For computing extracellular potentials in
4-sphere head model (brain, CSF, skull, scalp)
from current dipole moment
* `eegmegcalc.InfiniteVolumeConductor`:
To compute extracellular potentials in infinite volume conductor
from current dipole moment
* `eegmegcalc.InfiniteHomogeneousVolCondMEG`:
Class for computing magnetic field from current dipole moments under the assumption
of infinite homogeneous volume conductor model
* `eegmegcalc.SphericallySymmetricVolCondMEG`:
Class for computing magnetic field from current dipole moments under the assumption
of a spherically symmetric volume conductor model
* `eegmegcalc.NYHeadModel`:
Class for computing extracellular potentials in detailed head volume
conductor model (https://www.parralab.org/nyhead)
Each class (except `CellGeometry`) should have a public method `get_transformation_matrix()`
that returns the linear map between the transmembrane currents or current dipole moment
and corresponding measurements (see Usage below)
## Usage
A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source in a linear, isotropic and homogeneous volume conductor,
computing the extracellular potential in ten different locations
alongside the cell geometry:
>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, PointSourcePotential
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg), # (µm)
y=np.array([[0.] * 2] * n_seg), # (µm)
z=np.array([[10. * x, 10. * (x + 1)]
for x in range(n_seg)]), # (µm)
d=np.array([1.] * n_seg)) # (µm)
>>> # instantiate class `PointSourcePotential`:
>>> psp = PointSourcePotential(cell,
x=np.ones(10) * 10,
y=np.zeros(10),
z=np.arange(10) * 10,
sigma=0.3)
>>> # get linear response matrix mapping currents to measurements
>>> M = psp.get_transformation_matrix()
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
[0., 0.],
[1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M @ imem
>>> V_ex
array([[-0.01387397, 0.01387397],
[-0.00901154, 0.00901154],
[ 0.00901154, -0.00901154],
[ 0.01387397, -0.01387397],
[ 0.00742668, -0.00742668],
[ 0.00409718, -0.00409718],
[ 0.00254212, -0.00254212],
[ 0.00172082, -0.00172082],
[ 0.00123933, -0.00123933],
[ 0.00093413, -0.00093413]])
A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source,
computing the current dipole moment and computing the potential in ten different
remote locations away from the cell geometry:
>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, CurrentDipoleMoment, \
>>> eegmegcalc
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg), # (µm)
y=np.array([[0.] * 2] * n_seg), # (µm)
z=np.array([[10. * x, 10. * (x + 1)]
for x in range(n_seg)]), # (µm)
d=np.array([1.] * n_seg)) # (µm)
>>> # instantiate class `CurrentDipoleMoment`:
>>> cdp = CurrentDipoleMoment(cell)
>>> M_I_to_P = cdp.get_transformation_matrix()
>>> # instantiate class `eegmegcalc.InfiniteVolumeConductor` and map dipole moment to
>>> # extracellular potential at measurement sites
>>> ivc = eegmegcalc.InfiniteVolumeConductor(sigma=0.3)
>>> # compute linear response matrix between dipole moment and
>>> # extracellular potential
>>> M_P_to_V = ivc.get_transformation_matrix(np.c_[np.ones(10) * 1000,
np.zeros(10),
np.arange(10) * 100])
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
[0., 0.],
[1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M_P_to_V @ M_I_to_P @ imem
>>> V_ex
array([[ 0.00000000e+00, 0.00000000e+00],
[ 5.22657054e-07, -5.22657054e-07],
[ 1.00041193e-06, -1.00041193e-06],
[ 1.39855769e-06, -1.39855769e-06],
[ 1.69852477e-06, -1.69852477e-06],
[ 1.89803345e-06, -1.89803345e-06],
[ 2.00697409e-06, -2.00697409e-06],
[ 2.04182029e-06, -2.04182029e-06],
[ 2.02079888e-06, -2.02079888e-06],
[ 1.96075587e-06, -1.96075587e-06]])
## Physical units
Notes on physical units used in `LFPykit`:
- There are no explicit checks for physical units
- Transmembrane currents are assumed to be in units of (nA)
- Spatial information is assumed to be in units of (µm)
- Voltages are assumed to be in units of (mV)
- Extracellular conductivities are assumed to be in units of (S/m)
- current dipole moments are assumed to be in units of (nA µm)
- Magnetic fields are assumed to be in units of (nA/µm)
## Dimensionality
- Transmembrane currents are represented by arrays with shape `(n_seg, n_timesteps)`
where `n_seg` is the number of segments of the neuron model.
- Current dipole moments are represented by arrays with shape `(3, n_timesteps)`
- Response matrices **M** have shape `(n_points, input.shape[0])` where `n_points` is
for instance the number of extracellular recording sites and `input.shape[0]`
the first dimension of the input; that is, the number of segments in case of
transmembrane currents or 3 in case of current dipole moments.
- predicted signals (except magnetic fields using `eegmegcalc.InfiniteHomogeneousVolCondMEG` or
`eegmegcalc.SphericallySymmetricVolCondMEG`) have shape `(n_points, n_timesteps)`
## Documentation
The online Documentation of `LFPykit` can be found here:
https://lfpykit.readthedocs.io/en/latest
## Dependencies
`LFPykit` is implemented in Python and is written (and continuously tested) for `Python >= 3.7`.
The main `LFPykit` module depends on `numpy`, `scipy` and `MEAutility` (https://github.com/alejoe91/MEAutility, https://meautility.readthedocs.io/en/latest/).
Running all unit tests and example files may in addition require `py.test`, `matplotlib`,
`neuron` (https://www.neuron.yale.edu),
(`arbor` coming) and
`LFPy` (https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).
## Installation
### From development sources (https://github.com/LFPy/LFPykit)
Install the current development version on https://GitHub.com using `git` (https://git-scm.com):
$ git clone https://github.com/LFPy/LFPykit.git
$ cd LFPykit
$ python setup.py install # --user optional
or using `pip`:
$ pip install . # --user optional
For active development, link the repository location
$ python setup.py develop # --user optional
### Installation of stable releases on PyPI.org (https://www.pypi.org)
Installing from the Python Package Index (https://www.pypi.org/project/lfpykit):
$ pip install lfpykit # --user optional
To upgrade the installation using pip:
$ pip install --upgrade --no-deps lfpykit
### Installation of stable releases on conda-forge (https://conda-forge.org)
Installing `lfpykit` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:
$ conda config --add channels conda-forge
Once the `conda-forge` channel has been enabled, `lfpykit` can be installed with:
$ conda install lfpykit
It is possible to list all of the versions of `lfpykit` available on your platform with:
$ conda search lfpykit --channel conda-forge
%package help
Summary: Development documents and examples for LFPykit
Provides: python3-LFPykit-doc
%description help
# LFPykit
This Python module contain freestanding implementations of electrostatic
forward models incorporated in LFPy
(https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).
The aim of the `LFPykit` module is to provide electrostatic models
in a manner that facilitates forward-model predictions of extracellular
potentials and related measures from multicompartment neuron models, but
without explicit dependencies on neural simulation software such as
NEURON (https://neuron.yale.edu, https://github.com/neuronsimulator/nrn),
Arbor (https://arbor.readthedocs.io, https://github.com/arbor-sim/arbor),
or even LFPy.
The `LFPykit` module can then be more easily incorporated with
these simulators, or in various projects that utilize them such as
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy).
BMTK (https://alleninstitute.github.io/bmtk/, https://github.com/AllenInstitute/bmtk),
etc.
Its main functionality is providing class methods that return two-dimensional
linear transformation matrices **M**
between transmembrane currents
**I** of multicompartment neuron models and some
measurement **Y** given by **Y**=**MI**.
The presently incorporated volume conductor models have been incorporated in
LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy),
as described in various papers and books:
1. Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT
(2014) LFPy: a tool for biophysical simulation of extracellular
potentials generated by detailed model neurons. Front.
Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041
2. Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling of Neural
Network Activity: Computing LFP, ECoG, EEG, and MEG
Signals With LFPy 2.0. Front. Neuroinform. 12:92.
doi: 10.3389/fninf.2018.00092
3. Ness, T. V., Chintaluri, C., Potworowski, J., Leski, S., Glabska,
H., Wójcik, D. K., et al. (2015). Modelling and analysis of electrical
potentials recorded in microelectrode arrays (MEAs).
Neuroinformatics 13:403–426. doi: 10.1007/s12021-015-9265-6
4. Nunez and Srinivasan, Oxford University Press, 2006
5. Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK
(2017). Corrected Four-sphere Head Model for EEG Signals. Front. Hum.
Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490
## Build Status
[](https://zenodo.org/badge/latestdoi/288660131)
[](https://coveralls.io/github/LFPy/LFPykit?branch=master)
[](https://lfpykit.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/LFPy/LFPykit/actions/workflows/flake8.yml)
[](https://github.com/LFPy/LFPykit/actions?query=workflow%3A%22Python+application%22)
[](https://pypi.org/project/LFPykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://anaconda.org/conda-forge/lfpykit)
[](https://mybinder.org/v2/gh/LFPy/LFPykit.git/master)
[](http://www.gnu.org/licenses/gpl-3.0.html)
## Features
`LFPykit` presently incorporates different electrostatic forward models for extracellular potentials
and magnetic signals that has been derived using volume conductor theory.
In volume-conductor theory the extracellular potentials can be calculated from a distance-weighted sum of contributions from transmembrane currents of neurons.
Given the same transmembrane currents, the contributions to the magnetic field recorded both inside and outside the brain can also be computed.
The module presently incorporates different classes.
To represent the geometry of a multicompartment neuron model we have:
* `CellGeometry`:
Base class representing a multicompartment neuron geometry in terms
of segment x-, y-, z-coordinates and diameter.
Different classes built to map transmembrane currents of `CellGeometry` like instances
to different measurement modalities:
* `LinearModel`:
Base class representing a generic forward model
for subclassing
* `CurrentDipoleMoment`:
Class for predicting current dipole moments
* `PointSourcePotential`:
Class for predicting extracellular potentials
assuming point sources and point contacts
* `LineSourcePotential`:
Class for predicting extracellular potentials assuming
line sourcers and point contacts
* `RecExtElectrode`:
Class for simulations of extracellular potentials
* `RecMEAElectrode`:
Class for simulations of in vitro (slice) extracellular
potentials
* `OneSphereVolumeConductor`:
For computing extracellular potentials within
sand outside a homogeneous sphere
* `LaminarCurrentSourceDensity`:
For computing the 'ground truth' current source density across
cylindrical volumes aligned with the z-axis
* `VolumetricCurrentSourceDensity`:
For computing the 'ground truth' current source density on regularly
spaced 3D grid
Different classes built to map current dipole moments (i.e., computed using `CurrentDipoleMoment`)
to extracellular measurements:
* `eegmegcalc.FourSphereVolumeConductor`:
For computing extracellular potentials in
4-sphere head model (brain, CSF, skull, scalp)
from current dipole moment
* `eegmegcalc.InfiniteVolumeConductor`:
To compute extracellular potentials in infinite volume conductor
from current dipole moment
* `eegmegcalc.InfiniteHomogeneousVolCondMEG`:
Class for computing magnetic field from current dipole moments under the assumption
of infinite homogeneous volume conductor model
* `eegmegcalc.SphericallySymmetricVolCondMEG`:
Class for computing magnetic field from current dipole moments under the assumption
of a spherically symmetric volume conductor model
* `eegmegcalc.NYHeadModel`:
Class for computing extracellular potentials in detailed head volume
conductor model (https://www.parralab.org/nyhead)
Each class (except `CellGeometry`) should have a public method `get_transformation_matrix()`
that returns the linear map between the transmembrane currents or current dipole moment
and corresponding measurements (see Usage below)
## Usage
A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source in a linear, isotropic and homogeneous volume conductor,
computing the extracellular potential in ten different locations
alongside the cell geometry:
>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, PointSourcePotential
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg), # (µm)
y=np.array([[0.] * 2] * n_seg), # (µm)
z=np.array([[10. * x, 10. * (x + 1)]
for x in range(n_seg)]), # (µm)
d=np.array([1.] * n_seg)) # (µm)
>>> # instantiate class `PointSourcePotential`:
>>> psp = PointSourcePotential(cell,
x=np.ones(10) * 10,
y=np.zeros(10),
z=np.arange(10) * 10,
sigma=0.3)
>>> # get linear response matrix mapping currents to measurements
>>> M = psp.get_transformation_matrix()
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
[0., 0.],
[1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M @ imem
>>> V_ex
array([[-0.01387397, 0.01387397],
[-0.00901154, 0.00901154],
[ 0.00901154, -0.00901154],
[ 0.01387397, -0.01387397],
[ 0.00742668, -0.00742668],
[ 0.00409718, -0.00409718],
[ 0.00254212, -0.00254212],
[ 0.00172082, -0.00172082],
[ 0.00123933, -0.00123933],
[ 0.00093413, -0.00093413]])
A basic usage example using a mock 3-segment stick-like neuron,
treating each segment as a point source,
computing the current dipole moment and computing the potential in ten different
remote locations away from the cell geometry:
>>> # imports
>>> import numpy as np
>>> from lfpykit import CellGeometry, CurrentDipoleMoment, \
>>> eegmegcalc
>>> n_seg = 3
>>> # instantiate class `CellGeometry`:
>>> cell = CellGeometry(x=np.array([[0.] * 2] * n_seg), # (µm)
y=np.array([[0.] * 2] * n_seg), # (µm)
z=np.array([[10. * x, 10. * (x + 1)]
for x in range(n_seg)]), # (µm)
d=np.array([1.] * n_seg)) # (µm)
>>> # instantiate class `CurrentDipoleMoment`:
>>> cdp = CurrentDipoleMoment(cell)
>>> M_I_to_P = cdp.get_transformation_matrix()
>>> # instantiate class `eegmegcalc.InfiniteVolumeConductor` and map dipole moment to
>>> # extracellular potential at measurement sites
>>> ivc = eegmegcalc.InfiniteVolumeConductor(sigma=0.3)
>>> # compute linear response matrix between dipole moment and
>>> # extracellular potential
>>> M_P_to_V = ivc.get_transformation_matrix(np.c_[np.ones(10) * 1000,
np.zeros(10),
np.arange(10) * 100])
>>> # transmembrane currents (nA):
>>> imem = np.array([[-1., 1.],
[0., 0.],
[1., -1.]])
>>> # compute extracellular potentials (mV)
>>> V_ex = M_P_to_V @ M_I_to_P @ imem
>>> V_ex
array([[ 0.00000000e+00, 0.00000000e+00],
[ 5.22657054e-07, -5.22657054e-07],
[ 1.00041193e-06, -1.00041193e-06],
[ 1.39855769e-06, -1.39855769e-06],
[ 1.69852477e-06, -1.69852477e-06],
[ 1.89803345e-06, -1.89803345e-06],
[ 2.00697409e-06, -2.00697409e-06],
[ 2.04182029e-06, -2.04182029e-06],
[ 2.02079888e-06, -2.02079888e-06],
[ 1.96075587e-06, -1.96075587e-06]])
## Physical units
Notes on physical units used in `LFPykit`:
- There are no explicit checks for physical units
- Transmembrane currents are assumed to be in units of (nA)
- Spatial information is assumed to be in units of (µm)
- Voltages are assumed to be in units of (mV)
- Extracellular conductivities are assumed to be in units of (S/m)
- current dipole moments are assumed to be in units of (nA µm)
- Magnetic fields are assumed to be in units of (nA/µm)
## Dimensionality
- Transmembrane currents are represented by arrays with shape `(n_seg, n_timesteps)`
where `n_seg` is the number of segments of the neuron model.
- Current dipole moments are represented by arrays with shape `(3, n_timesteps)`
- Response matrices **M** have shape `(n_points, input.shape[0])` where `n_points` is
for instance the number of extracellular recording sites and `input.shape[0]`
the first dimension of the input; that is, the number of segments in case of
transmembrane currents or 3 in case of current dipole moments.
- predicted signals (except magnetic fields using `eegmegcalc.InfiniteHomogeneousVolCondMEG` or
`eegmegcalc.SphericallySymmetricVolCondMEG`) have shape `(n_points, n_timesteps)`
## Documentation
The online Documentation of `LFPykit` can be found here:
https://lfpykit.readthedocs.io/en/latest
## Dependencies
`LFPykit` is implemented in Python and is written (and continuously tested) for `Python >= 3.7`.
The main `LFPykit` module depends on `numpy`, `scipy` and `MEAutility` (https://github.com/alejoe91/MEAutility, https://meautility.readthedocs.io/en/latest/).
Running all unit tests and example files may in addition require `py.test`, `matplotlib`,
`neuron` (https://www.neuron.yale.edu),
(`arbor` coming) and
`LFPy` (https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io).
## Installation
### From development sources (https://github.com/LFPy/LFPykit)
Install the current development version on https://GitHub.com using `git` (https://git-scm.com):
$ git clone https://github.com/LFPy/LFPykit.git
$ cd LFPykit
$ python setup.py install # --user optional
or using `pip`:
$ pip install . # --user optional
For active development, link the repository location
$ python setup.py develop # --user optional
### Installation of stable releases on PyPI.org (https://www.pypi.org)
Installing from the Python Package Index (https://www.pypi.org/project/lfpykit):
$ pip install lfpykit # --user optional
To upgrade the installation using pip:
$ pip install --upgrade --no-deps lfpykit
### Installation of stable releases on conda-forge (https://conda-forge.org)
Installing `lfpykit` from the `conda-forge` channel can be achieved by adding `conda-forge` to your channels with:
$ conda config --add channels conda-forge
Once the `conda-forge` channel has been enabled, `lfpykit` can be installed with:
$ conda install lfpykit
It is possible to list all of the versions of `lfpykit` available on your platform with:
$ conda search lfpykit --channel conda-forge
%prep
%autosetup -n LFPykit-0.5.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-LFPykit -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.1-1
- Package Spec generated
|