summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-05 11:35:13 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-05 11:35:13 +0000
commita532df8e5b48538573b36cad1d4234c4ea55ff41 (patch)
tree90cd825402c6a5d984943ec603bf575cfbf5afcd
parent26930c60a82ae5b9e494cb2c6ddfe9a952aeb23d (diff)
automatic import of python-lyft-dataset-sdkopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-lyft-dataset-sdk.spec284
-rw-r--r--sources1
3 files changed, 286 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..46ee1b1 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/lyft_dataset_sdk-0.0.8.tar.gz
diff --git a/python-lyft-dataset-sdk.spec b/python-lyft-dataset-sdk.spec
new file mode 100644
index 0000000..244031e
--- /dev/null
+++ b/python-lyft-dataset-sdk.spec
@@ -0,0 +1,284 @@
+%global _empty_manifest_terminate_build 0
+Name: python-lyft-dataset-sdk
+Version: 0.0.8
+Release: 1
+Summary: SDK for Lyft dataset.
+License: Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
+URL: https://github.com/lyft/nuscenes-devkit
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ae/89/4713e7e8dbdf91ddf25276ccd3781b7558f06cfdc1c6b0e6ec7a614083de/lyft_dataset_sdk-0.0.8.tar.gz
+BuildArch: noarch
+
+Requires: python3-flake8
+Requires: python3-numpy
+Requires: python3-opencv-python
+Requires: python3-Pillow
+Requires: python3-pyquaternion
+Requires: python3-scikit-learn
+Requires: python3-tqdm
+Requires: python3-scipy
+Requires: python3-cachetools
+Requires: python3-Shapely
+Requires: python3-fire
+Requires: python3-pytest
+Requires: python3-black
+Requires: python3-matplotlib
+Requires: python3-pandas
+Requires: python3-plotly
+Requires: python3-pytest
+
+%description
+# Lyft Dataset SDK
+
+Welcome to the devkit for the [Lyft Level 5 AV dataset](https://level5.lyft.com/dataset/)! This devkit shall help you to visualise and explore our dataset.
+
+
+## Release Notes
+This devkit is based on a version of the [nuScenes devkit](https://www.nuscenes.org).
+
+## Getting Started
+
+### Installation
+
+You can use pip to install [lyft-dataset-sdk](https://pypi.org/project/lyft-dataset-sdk/):
+```bash
+pip install -U lyft_dataset_sdk
+```
+
+If you want to get the latest version of the code before it is released on PyPI you can install the library from GitHub:
+
+```bash
+pip install -U git+https://github.com/lyft/nuscenes-devkit
+```
+
+### Dataset Download
+Go to <https://level5.lyft.com/dataset/> to download the Lyft Level 5 AV Dataset.
+
+
+The dataset is also availible as a part of the [Lyft 3D Object Detection for Autonomous Vehicles Challenge](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles).
+
+### Tutorial and Reference Model
+Check out the [tutorial and reference model README](notebooks/README.md).
+
+![](notebooks/media/001.gif)
+
+
+# Dataset structure
+
+The dataset contains of json files:
+
+1. `scene.json` - 25-45 seconds snippet of a car's journey.
+2. `sample.json` - An annotated snapshot of a scene at a particular timestamp.
+3. `sample_data.json` - Data collected from a particular sensor.
+4. `sample_annotation.json` - An annotated instance of an object within our interest.
+5. `instance.json` - Enumeration of all object instance we observed.
+6. `category.json` - Taxonomy of object categories (e.g. vehicle, human).
+7. `attribute.json` - Property of an instance that can change while the category remains the same.
+8. `visibility.json` - (currently not used)
+9. `sensor.json` - A specific sensor type.
+10. `calibrated_sensor.json` - Definition of a particular sensor as calibrated on a particular vehicle.
+11. `ego_pose.json` - Ego vehicle poses at a particular timestamp.
+12. `log.json` - Log information from which the data was extracted.
+13. `map.json` - Map data that is stored as binary semantic masks from a top-down view.
+
+
+With [the schema](schema.md).
+
+# Data Exploration Tutorial
+
+To get started with the Lyft Dataset SDK, run the tutorial using [Jupyter Notebook](notebooks/tutorial_lyft.ipynb).
+
+# Contributing
+We would be happy to accept issue reports and pull requests from the community.
+
+For creating pull requests follow our [contributing guide](docs/CONTRIBUTING.md).
+
+
+
+%package -n python3-lyft-dataset-sdk
+Summary: SDK for Lyft dataset.
+Provides: python-lyft-dataset-sdk
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-lyft-dataset-sdk
+# Lyft Dataset SDK
+
+Welcome to the devkit for the [Lyft Level 5 AV dataset](https://level5.lyft.com/dataset/)! This devkit shall help you to visualise and explore our dataset.
+
+
+## Release Notes
+This devkit is based on a version of the [nuScenes devkit](https://www.nuscenes.org).
+
+## Getting Started
+
+### Installation
+
+You can use pip to install [lyft-dataset-sdk](https://pypi.org/project/lyft-dataset-sdk/):
+```bash
+pip install -U lyft_dataset_sdk
+```
+
+If you want to get the latest version of the code before it is released on PyPI you can install the library from GitHub:
+
+```bash
+pip install -U git+https://github.com/lyft/nuscenes-devkit
+```
+
+### Dataset Download
+Go to <https://level5.lyft.com/dataset/> to download the Lyft Level 5 AV Dataset.
+
+
+The dataset is also availible as a part of the [Lyft 3D Object Detection for Autonomous Vehicles Challenge](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles).
+
+### Tutorial and Reference Model
+Check out the [tutorial and reference model README](notebooks/README.md).
+
+![](notebooks/media/001.gif)
+
+
+# Dataset structure
+
+The dataset contains of json files:
+
+1. `scene.json` - 25-45 seconds snippet of a car's journey.
+2. `sample.json` - An annotated snapshot of a scene at a particular timestamp.
+3. `sample_data.json` - Data collected from a particular sensor.
+4. `sample_annotation.json` - An annotated instance of an object within our interest.
+5. `instance.json` - Enumeration of all object instance we observed.
+6. `category.json` - Taxonomy of object categories (e.g. vehicle, human).
+7. `attribute.json` - Property of an instance that can change while the category remains the same.
+8. `visibility.json` - (currently not used)
+9. `sensor.json` - A specific sensor type.
+10. `calibrated_sensor.json` - Definition of a particular sensor as calibrated on a particular vehicle.
+11. `ego_pose.json` - Ego vehicle poses at a particular timestamp.
+12. `log.json` - Log information from which the data was extracted.
+13. `map.json` - Map data that is stored as binary semantic masks from a top-down view.
+
+
+With [the schema](schema.md).
+
+# Data Exploration Tutorial
+
+To get started with the Lyft Dataset SDK, run the tutorial using [Jupyter Notebook](notebooks/tutorial_lyft.ipynb).
+
+# Contributing
+We would be happy to accept issue reports and pull requests from the community.
+
+For creating pull requests follow our [contributing guide](docs/CONTRIBUTING.md).
+
+
+
+%package help
+Summary: Development documents and examples for lyft-dataset-sdk
+Provides: python3-lyft-dataset-sdk-doc
+%description help
+# Lyft Dataset SDK
+
+Welcome to the devkit for the [Lyft Level 5 AV dataset](https://level5.lyft.com/dataset/)! This devkit shall help you to visualise and explore our dataset.
+
+
+## Release Notes
+This devkit is based on a version of the [nuScenes devkit](https://www.nuscenes.org).
+
+## Getting Started
+
+### Installation
+
+You can use pip to install [lyft-dataset-sdk](https://pypi.org/project/lyft-dataset-sdk/):
+```bash
+pip install -U lyft_dataset_sdk
+```
+
+If you want to get the latest version of the code before it is released on PyPI you can install the library from GitHub:
+
+```bash
+pip install -U git+https://github.com/lyft/nuscenes-devkit
+```
+
+### Dataset Download
+Go to <https://level5.lyft.com/dataset/> to download the Lyft Level 5 AV Dataset.
+
+
+The dataset is also availible as a part of the [Lyft 3D Object Detection for Autonomous Vehicles Challenge](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles).
+
+### Tutorial and Reference Model
+Check out the [tutorial and reference model README](notebooks/README.md).
+
+![](notebooks/media/001.gif)
+
+
+# Dataset structure
+
+The dataset contains of json files:
+
+1. `scene.json` - 25-45 seconds snippet of a car's journey.
+2. `sample.json` - An annotated snapshot of a scene at a particular timestamp.
+3. `sample_data.json` - Data collected from a particular sensor.
+4. `sample_annotation.json` - An annotated instance of an object within our interest.
+5. `instance.json` - Enumeration of all object instance we observed.
+6. `category.json` - Taxonomy of object categories (e.g. vehicle, human).
+7. `attribute.json` - Property of an instance that can change while the category remains the same.
+8. `visibility.json` - (currently not used)
+9. `sensor.json` - A specific sensor type.
+10. `calibrated_sensor.json` - Definition of a particular sensor as calibrated on a particular vehicle.
+11. `ego_pose.json` - Ego vehicle poses at a particular timestamp.
+12. `log.json` - Log information from which the data was extracted.
+13. `map.json` - Map data that is stored as binary semantic masks from a top-down view.
+
+
+With [the schema](schema.md).
+
+# Data Exploration Tutorial
+
+To get started with the Lyft Dataset SDK, run the tutorial using [Jupyter Notebook](notebooks/tutorial_lyft.ipynb).
+
+# Contributing
+We would be happy to accept issue reports and pull requests from the community.
+
+For creating pull requests follow our [contributing guide](docs/CONTRIBUTING.md).
+
+
+
+%prep
+%autosetup -n lyft-dataset-sdk-0.0.8
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-lyft-dataset-sdk -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.8-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..4cdb3f2
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+3eff5fb32a0dd9061077b7b88580a2a0 lyft_dataset_sdk-0.0.8.tar.gz