blob: 244031e616c25ddd1483057d630e302f4073c78c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
%global _empty_manifest_terminate_build 0
Name: python-lyft-dataset-sdk
Version: 0.0.8
Release: 1
Summary: SDK for Lyft dataset.
License: Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
URL: https://github.com/lyft/nuscenes-devkit
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ae/89/4713e7e8dbdf91ddf25276ccd3781b7558f06cfdc1c6b0e6ec7a614083de/lyft_dataset_sdk-0.0.8.tar.gz
BuildArch: noarch
Requires: python3-flake8
Requires: python3-numpy
Requires: python3-opencv-python
Requires: python3-Pillow
Requires: python3-pyquaternion
Requires: python3-scikit-learn
Requires: python3-tqdm
Requires: python3-scipy
Requires: python3-cachetools
Requires: python3-Shapely
Requires: python3-fire
Requires: python3-pytest
Requires: python3-black
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-plotly
Requires: python3-pytest
%description
# Lyft Dataset SDK
Welcome to the devkit for the [Lyft Level 5 AV dataset](https://level5.lyft.com/dataset/)! This devkit shall help you to visualise and explore our dataset.
## Release Notes
This devkit is based on a version of the [nuScenes devkit](https://www.nuscenes.org).
## Getting Started
### Installation
You can use pip to install [lyft-dataset-sdk](https://pypi.org/project/lyft-dataset-sdk/):
```bash
pip install -U lyft_dataset_sdk
```
If you want to get the latest version of the code before it is released on PyPI you can install the library from GitHub:
```bash
pip install -U git+https://github.com/lyft/nuscenes-devkit
```
### Dataset Download
Go to <https://level5.lyft.com/dataset/> to download the Lyft Level 5 AV Dataset.
The dataset is also availible as a part of the [Lyft 3D Object Detection for Autonomous Vehicles Challenge](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles).
### Tutorial and Reference Model
Check out the [tutorial and reference model README](notebooks/README.md).

# Dataset structure
The dataset contains of json files:
1. `scene.json` - 25-45 seconds snippet of a car's journey.
2. `sample.json` - An annotated snapshot of a scene at a particular timestamp.
3. `sample_data.json` - Data collected from a particular sensor.
4. `sample_annotation.json` - An annotated instance of an object within our interest.
5. `instance.json` - Enumeration of all object instance we observed.
6. `category.json` - Taxonomy of object categories (e.g. vehicle, human).
7. `attribute.json` - Property of an instance that can change while the category remains the same.
8. `visibility.json` - (currently not used)
9. `sensor.json` - A specific sensor type.
10. `calibrated_sensor.json` - Definition of a particular sensor as calibrated on a particular vehicle.
11. `ego_pose.json` - Ego vehicle poses at a particular timestamp.
12. `log.json` - Log information from which the data was extracted.
13. `map.json` - Map data that is stored as binary semantic masks from a top-down view.
With [the schema](schema.md).
# Data Exploration Tutorial
To get started with the Lyft Dataset SDK, run the tutorial using [Jupyter Notebook](notebooks/tutorial_lyft.ipynb).
# Contributing
We would be happy to accept issue reports and pull requests from the community.
For creating pull requests follow our [contributing guide](docs/CONTRIBUTING.md).
%package -n python3-lyft-dataset-sdk
Summary: SDK for Lyft dataset.
Provides: python-lyft-dataset-sdk
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-lyft-dataset-sdk
# Lyft Dataset SDK
Welcome to the devkit for the [Lyft Level 5 AV dataset](https://level5.lyft.com/dataset/)! This devkit shall help you to visualise and explore our dataset.
## Release Notes
This devkit is based on a version of the [nuScenes devkit](https://www.nuscenes.org).
## Getting Started
### Installation
You can use pip to install [lyft-dataset-sdk](https://pypi.org/project/lyft-dataset-sdk/):
```bash
pip install -U lyft_dataset_sdk
```
If you want to get the latest version of the code before it is released on PyPI you can install the library from GitHub:
```bash
pip install -U git+https://github.com/lyft/nuscenes-devkit
```
### Dataset Download
Go to <https://level5.lyft.com/dataset/> to download the Lyft Level 5 AV Dataset.
The dataset is also availible as a part of the [Lyft 3D Object Detection for Autonomous Vehicles Challenge](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles).
### Tutorial and Reference Model
Check out the [tutorial and reference model README](notebooks/README.md).

# Dataset structure
The dataset contains of json files:
1. `scene.json` - 25-45 seconds snippet of a car's journey.
2. `sample.json` - An annotated snapshot of a scene at a particular timestamp.
3. `sample_data.json` - Data collected from a particular sensor.
4. `sample_annotation.json` - An annotated instance of an object within our interest.
5. `instance.json` - Enumeration of all object instance we observed.
6. `category.json` - Taxonomy of object categories (e.g. vehicle, human).
7. `attribute.json` - Property of an instance that can change while the category remains the same.
8. `visibility.json` - (currently not used)
9. `sensor.json` - A specific sensor type.
10. `calibrated_sensor.json` - Definition of a particular sensor as calibrated on a particular vehicle.
11. `ego_pose.json` - Ego vehicle poses at a particular timestamp.
12. `log.json` - Log information from which the data was extracted.
13. `map.json` - Map data that is stored as binary semantic masks from a top-down view.
With [the schema](schema.md).
# Data Exploration Tutorial
To get started with the Lyft Dataset SDK, run the tutorial using [Jupyter Notebook](notebooks/tutorial_lyft.ipynb).
# Contributing
We would be happy to accept issue reports and pull requests from the community.
For creating pull requests follow our [contributing guide](docs/CONTRIBUTING.md).
%package help
Summary: Development documents and examples for lyft-dataset-sdk
Provides: python3-lyft-dataset-sdk-doc
%description help
# Lyft Dataset SDK
Welcome to the devkit for the [Lyft Level 5 AV dataset](https://level5.lyft.com/dataset/)! This devkit shall help you to visualise and explore our dataset.
## Release Notes
This devkit is based on a version of the [nuScenes devkit](https://www.nuscenes.org).
## Getting Started
### Installation
You can use pip to install [lyft-dataset-sdk](https://pypi.org/project/lyft-dataset-sdk/):
```bash
pip install -U lyft_dataset_sdk
```
If you want to get the latest version of the code before it is released on PyPI you can install the library from GitHub:
```bash
pip install -U git+https://github.com/lyft/nuscenes-devkit
```
### Dataset Download
Go to <https://level5.lyft.com/dataset/> to download the Lyft Level 5 AV Dataset.
The dataset is also availible as a part of the [Lyft 3D Object Detection for Autonomous Vehicles Challenge](https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles).
### Tutorial and Reference Model
Check out the [tutorial and reference model README](notebooks/README.md).

# Dataset structure
The dataset contains of json files:
1. `scene.json` - 25-45 seconds snippet of a car's journey.
2. `sample.json` - An annotated snapshot of a scene at a particular timestamp.
3. `sample_data.json` - Data collected from a particular sensor.
4. `sample_annotation.json` - An annotated instance of an object within our interest.
5. `instance.json` - Enumeration of all object instance we observed.
6. `category.json` - Taxonomy of object categories (e.g. vehicle, human).
7. `attribute.json` - Property of an instance that can change while the category remains the same.
8. `visibility.json` - (currently not used)
9. `sensor.json` - A specific sensor type.
10. `calibrated_sensor.json` - Definition of a particular sensor as calibrated on a particular vehicle.
11. `ego_pose.json` - Ego vehicle poses at a particular timestamp.
12. `log.json` - Log information from which the data was extracted.
13. `map.json` - Map data that is stored as binary semantic masks from a top-down view.
With [the schema](schema.md).
# Data Exploration Tutorial
To get started with the Lyft Dataset SDK, run the tutorial using [Jupyter Notebook](notebooks/tutorial_lyft.ipynb).
# Contributing
We would be happy to accept issue reports and pull requests from the community.
For creating pull requests follow our [contributing guide](docs/CONTRIBUTING.md).
%prep
%autosetup -n lyft-dataset-sdk-0.0.8
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-lyft-dataset-sdk -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.8-1
- Package Spec generated
|