1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
%global _empty_manifest_terminate_build 0
Name: python-mhcflurry
Version: 2.0.6
Release: 1
Summary: MHC Binding Predictor
License: http://www.apache.org/licenses/LICENSE-2.0.html
URL: https://github.com/openvax/mhcflurry
Source0: https://mirrors.aliyun.com/pypi/web/packages/b6/8c/449b1b81d3731cd668df54ff0b14bf9083378717a09deaef8bf884be6cf2/mhcflurry-2.0.6.tar.gz
BuildArch: noarch
Requires: python3-six
Requires: python3-pandas
Requires: python3-appdirs
Requires: python3-scikit-learn
Requires: python3-mhcgnomes
Requires: python3-pyyaml
Requires: python3-tqdm
Requires: python3-np-utils
%description
[](https://app.travis-ci.com/openvax/mhcflurry)
# mhcflurry
[MHC I](https://en.wikipedia.org/wiki/MHC_class_I) ligand
prediction package with competitive accuracy and a fast and
[documented](http://openvax.github.io/mhcflurry/) implementation.
MHCflurry implements class I peptide/MHC binding affinity prediction.
The current version provides pan-MHC I predictors supporting any MHC
allele of known sequence. MHCflurry runs on Python 3.4+ using the
[tensorflow](https://www.tensorflow.org/) neural network library.
It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html)
and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html)
interfaces.
Starting in version 1.6.0, MHCflurry also includes two expermental predictors,
an "antigen processing" predictor that attempts to model MHC allele-independent
effects such as proteosomal cleavage and a "presentation" predictor that
integrates processing predictions with binding affinity predictions to give a
composite "presentation score." Both models are trained on mass spec-identified
MHC ligands. These models were updated to incorporate minor improvements
for the MHCflurry 2.0 release.
If you find MHCflurry useful in your research please cite:
> T. O'Donnell, A. Rubinsteyn, U. Laserson. "MHCflurry 2.0: Improved pan-allele prediction of MHC I-presented peptides by incorporating antigen processing," *Cell Systems*, 2020. https://doi.org/10.1016/j.cels.2020.06.010
> T. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher, "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction," *Cell Systems*, 2018. https://doi.org/10.1016/j.cels.2018.05.014
Please file an issue if you have questions or encounter problems.
Have a bugfix or other contribution? We would love your help. See our [contributing guidelines](CONTRIBUTING.md).
## Installation (pip)
Install the package:
```
$ pip install mhcflurry
```
If you don't already have it, you will also need to install tensorflow version 2.2.0 or later. On most platforms you can do this with:
```
$ pip install tensorflow
```
If you are on Apple silicon (M1 processor), then you'll need to run `pip install tensorflow-macos` instead. See these [instructions](https://caffeinedev.medium.com/how-to-install-tensorflow-on-m1-mac-8e9b91d93706) for more info.
Next download our datasets and trained models:
```
$ mhcflurry-downloads fetch
```
You can now generate predictions:
```
$ mhcflurry-predict \
--alleles HLA-A0201 HLA-A0301 \
--peptides SIINFEKL SIINFEKD SIINFEKQ \
--out /tmp/predictions.csv
Wrote: /tmp/predictions.csv
```
Or scan protein sequences for potential epitopes:
```
$ mhcflurry-predict-scan \
--sequences MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHS \
--alleles HLA-A*02:01 \
--out /tmp/predictions.csv
Wrote: /tmp/predictions.csv
```
See the [documentation](http://openvax.github.io/mhcflurry/) for more details.
## Docker
You can also try the latest (GitHub master) version of MHCflurry using the Docker
image hosted on [Dockerhub](https://hub.docker.com/r/openvax/mhcflurry) by
running:
```
$ docker run -p 9999:9999 --rm openvax/mhcflurry:latest
```
This will start a [jupyter](https://jupyter.org/) notebook server in an
environment that has MHCflurry installed. Go to `http://localhost:9999` in a
browser to use it.
To build the Docker image yourself, from a checkout run:
```
$ docker build -t mhcflurry:latest .
$ docker run -p 9999:9999 --rm mhcflurry:latest
```
## Predicted sequence motifs
Sequence logos for the binding motifs learned by MHCflurry BA are available [here](https://openvax.github.io/mhcflurry-motifs/).
## Common issues and fixes
### Problems downloading data and models
Some users have reported HTTP connection issues when using `mhcflurry-downloads fetch`. As a workaround, you can download the data manually (e.g. using `wget`) and then use `mhcflurry-downloads` just to copy the data to the right place.
To do this, first get the URL(s) of the downloads you need using `mhcflurry-downloads url`:
```
$ mhcflurry-downloads url models_class1_presentation
https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2```
```
Then make a directory and download the needed files to this directory:
```
$ mkdir downloads
$ wget --directory-prefix downloads https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2```
HTTP request sent, awaiting response... 200 OK
Length: 72616448 (69M) [application/octet-stream]
Saving to: 'downloads/models_class1_presentation.20200205.tar.bz2'
```
Now call `mhcflurry-downloads fetch` with the `--already-downloaded-dir` option to indicate that the downloads should be retrived from the specified directory:
```
$ mhcflurry-downloads fetch models_class1_presentation --already-downloaded-dir downloads
```
%package -n python3-mhcflurry
Summary: MHC Binding Predictor
Provides: python-mhcflurry
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-mhcflurry
[](https://app.travis-ci.com/openvax/mhcflurry)
# mhcflurry
[MHC I](https://en.wikipedia.org/wiki/MHC_class_I) ligand
prediction package with competitive accuracy and a fast and
[documented](http://openvax.github.io/mhcflurry/) implementation.
MHCflurry implements class I peptide/MHC binding affinity prediction.
The current version provides pan-MHC I predictors supporting any MHC
allele of known sequence. MHCflurry runs on Python 3.4+ using the
[tensorflow](https://www.tensorflow.org/) neural network library.
It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html)
and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html)
interfaces.
Starting in version 1.6.0, MHCflurry also includes two expermental predictors,
an "antigen processing" predictor that attempts to model MHC allele-independent
effects such as proteosomal cleavage and a "presentation" predictor that
integrates processing predictions with binding affinity predictions to give a
composite "presentation score." Both models are trained on mass spec-identified
MHC ligands. These models were updated to incorporate minor improvements
for the MHCflurry 2.0 release.
If you find MHCflurry useful in your research please cite:
> T. O'Donnell, A. Rubinsteyn, U. Laserson. "MHCflurry 2.0: Improved pan-allele prediction of MHC I-presented peptides by incorporating antigen processing," *Cell Systems*, 2020. https://doi.org/10.1016/j.cels.2020.06.010
> T. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher, "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction," *Cell Systems*, 2018. https://doi.org/10.1016/j.cels.2018.05.014
Please file an issue if you have questions or encounter problems.
Have a bugfix or other contribution? We would love your help. See our [contributing guidelines](CONTRIBUTING.md).
## Installation (pip)
Install the package:
```
$ pip install mhcflurry
```
If you don't already have it, you will also need to install tensorflow version 2.2.0 or later. On most platforms you can do this with:
```
$ pip install tensorflow
```
If you are on Apple silicon (M1 processor), then you'll need to run `pip install tensorflow-macos` instead. See these [instructions](https://caffeinedev.medium.com/how-to-install-tensorflow-on-m1-mac-8e9b91d93706) for more info.
Next download our datasets and trained models:
```
$ mhcflurry-downloads fetch
```
You can now generate predictions:
```
$ mhcflurry-predict \
--alleles HLA-A0201 HLA-A0301 \
--peptides SIINFEKL SIINFEKD SIINFEKQ \
--out /tmp/predictions.csv
Wrote: /tmp/predictions.csv
```
Or scan protein sequences for potential epitopes:
```
$ mhcflurry-predict-scan \
--sequences MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHS \
--alleles HLA-A*02:01 \
--out /tmp/predictions.csv
Wrote: /tmp/predictions.csv
```
See the [documentation](http://openvax.github.io/mhcflurry/) for more details.
## Docker
You can also try the latest (GitHub master) version of MHCflurry using the Docker
image hosted on [Dockerhub](https://hub.docker.com/r/openvax/mhcflurry) by
running:
```
$ docker run -p 9999:9999 --rm openvax/mhcflurry:latest
```
This will start a [jupyter](https://jupyter.org/) notebook server in an
environment that has MHCflurry installed. Go to `http://localhost:9999` in a
browser to use it.
To build the Docker image yourself, from a checkout run:
```
$ docker build -t mhcflurry:latest .
$ docker run -p 9999:9999 --rm mhcflurry:latest
```
## Predicted sequence motifs
Sequence logos for the binding motifs learned by MHCflurry BA are available [here](https://openvax.github.io/mhcflurry-motifs/).
## Common issues and fixes
### Problems downloading data and models
Some users have reported HTTP connection issues when using `mhcflurry-downloads fetch`. As a workaround, you can download the data manually (e.g. using `wget`) and then use `mhcflurry-downloads` just to copy the data to the right place.
To do this, first get the URL(s) of the downloads you need using `mhcflurry-downloads url`:
```
$ mhcflurry-downloads url models_class1_presentation
https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2```
```
Then make a directory and download the needed files to this directory:
```
$ mkdir downloads
$ wget --directory-prefix downloads https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2```
HTTP request sent, awaiting response... 200 OK
Length: 72616448 (69M) [application/octet-stream]
Saving to: 'downloads/models_class1_presentation.20200205.tar.bz2'
```
Now call `mhcflurry-downloads fetch` with the `--already-downloaded-dir` option to indicate that the downloads should be retrived from the specified directory:
```
$ mhcflurry-downloads fetch models_class1_presentation --already-downloaded-dir downloads
```
%package help
Summary: Development documents and examples for mhcflurry
Provides: python3-mhcflurry-doc
%description help
[](https://app.travis-ci.com/openvax/mhcflurry)
# mhcflurry
[MHC I](https://en.wikipedia.org/wiki/MHC_class_I) ligand
prediction package with competitive accuracy and a fast and
[documented](http://openvax.github.io/mhcflurry/) implementation.
MHCflurry implements class I peptide/MHC binding affinity prediction.
The current version provides pan-MHC I predictors supporting any MHC
allele of known sequence. MHCflurry runs on Python 3.4+ using the
[tensorflow](https://www.tensorflow.org/) neural network library.
It exposes [command-line](http://openvax.github.io/mhcflurry/commandline_tutorial.html)
and [Python library](http://openvax.github.io/mhcflurry/python_tutorial.html)
interfaces.
Starting in version 1.6.0, MHCflurry also includes two expermental predictors,
an "antigen processing" predictor that attempts to model MHC allele-independent
effects such as proteosomal cleavage and a "presentation" predictor that
integrates processing predictions with binding affinity predictions to give a
composite "presentation score." Both models are trained on mass spec-identified
MHC ligands. These models were updated to incorporate minor improvements
for the MHCflurry 2.0 release.
If you find MHCflurry useful in your research please cite:
> T. O'Donnell, A. Rubinsteyn, U. Laserson. "MHCflurry 2.0: Improved pan-allele prediction of MHC I-presented peptides by incorporating antigen processing," *Cell Systems*, 2020. https://doi.org/10.1016/j.cels.2020.06.010
> T. O’Donnell, A. Rubinsteyn, M. Bonsack, A. B. Riemer, U. Laserson, and J. Hammerbacher, "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction," *Cell Systems*, 2018. https://doi.org/10.1016/j.cels.2018.05.014
Please file an issue if you have questions or encounter problems.
Have a bugfix or other contribution? We would love your help. See our [contributing guidelines](CONTRIBUTING.md).
## Installation (pip)
Install the package:
```
$ pip install mhcflurry
```
If you don't already have it, you will also need to install tensorflow version 2.2.0 or later. On most platforms you can do this with:
```
$ pip install tensorflow
```
If you are on Apple silicon (M1 processor), then you'll need to run `pip install tensorflow-macos` instead. See these [instructions](https://caffeinedev.medium.com/how-to-install-tensorflow-on-m1-mac-8e9b91d93706) for more info.
Next download our datasets and trained models:
```
$ mhcflurry-downloads fetch
```
You can now generate predictions:
```
$ mhcflurry-predict \
--alleles HLA-A0201 HLA-A0301 \
--peptides SIINFEKL SIINFEKD SIINFEKQ \
--out /tmp/predictions.csv
Wrote: /tmp/predictions.csv
```
Or scan protein sequences for potential epitopes:
```
$ mhcflurry-predict-scan \
--sequences MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHS \
--alleles HLA-A*02:01 \
--out /tmp/predictions.csv
Wrote: /tmp/predictions.csv
```
See the [documentation](http://openvax.github.io/mhcflurry/) for more details.
## Docker
You can also try the latest (GitHub master) version of MHCflurry using the Docker
image hosted on [Dockerhub](https://hub.docker.com/r/openvax/mhcflurry) by
running:
```
$ docker run -p 9999:9999 --rm openvax/mhcflurry:latest
```
This will start a [jupyter](https://jupyter.org/) notebook server in an
environment that has MHCflurry installed. Go to `http://localhost:9999` in a
browser to use it.
To build the Docker image yourself, from a checkout run:
```
$ docker build -t mhcflurry:latest .
$ docker run -p 9999:9999 --rm mhcflurry:latest
```
## Predicted sequence motifs
Sequence logos for the binding motifs learned by MHCflurry BA are available [here](https://openvax.github.io/mhcflurry-motifs/).
## Common issues and fixes
### Problems downloading data and models
Some users have reported HTTP connection issues when using `mhcflurry-downloads fetch`. As a workaround, you can download the data manually (e.g. using `wget`) and then use `mhcflurry-downloads` just to copy the data to the right place.
To do this, first get the URL(s) of the downloads you need using `mhcflurry-downloads url`:
```
$ mhcflurry-downloads url models_class1_presentation
https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2```
```
Then make a directory and download the needed files to this directory:
```
$ mkdir downloads
$ wget --directory-prefix downloads https://github.com/openvax/mhcflurry/releases/download/1.6.0/models_class1_presentation.20200205.tar.bz2```
HTTP request sent, awaiting response... 200 OK
Length: 72616448 (69M) [application/octet-stream]
Saving to: 'downloads/models_class1_presentation.20200205.tar.bz2'
```
Now call `mhcflurry-downloads fetch` with the `--already-downloaded-dir` option to indicate that the downloads should be retrived from the specified directory:
```
$ mhcflurry-downloads fetch models_class1_presentation --already-downloaded-dir downloads
```
%prep
%autosetup -n mhcflurry-2.0.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-mhcflurry -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.6-1
- Package Spec generated
|