1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
%global _empty_manifest_terminate_build 0
Name: python-miditok
Version: 2.0.6
Release: 1
Summary: A convenient MIDI tokenizer for Deep Learning networks, with multiple encoding strategies
License: MIT
URL: https://github.com/Natooz/MidiTok
Source0: https://mirrors.aliyun.com/pypi/web/packages/3c/58/587f75bd26a9717872bc5d1276ddcc10cedbf9344037fa56e062b1f0cbac/miditok-2.0.6.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-miditoolkit
Requires: python3-tqdm
%description
# MidiTok
Python package to tokenize MIDI music files, presented at the ISMIR 2021 LBD.

[](https://pypi.python.org/pypi/miditok/)
[](https://www.python.org/downloads/release/)
[](https://miditok.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/Natooz/MidiTok/actions/workflows/pytest.yml)
[](https://codecov.io/gh/Natooz/MidiTok)
[](https://github.com/Natooz/MidiTok/blob/main/LICENSE)
[](https://pepy.tech/project/MidiTok)
[](https://github.com/psf/black)
Using Deep Learning with symbolic music ? MidiTok can take care of converting (tokenizing) your MIDI files into tokens, ready to be fed to models such as Transformer, for any generation, transcription or MIR task.
MidiTok features most known [MIDI tokenizations](https://miditok.readthedocs.io/en/latest/tokenizations.html) (e.g. [REMI](https://arxiv.org/abs/2002.00212), [Compound Word](https://arxiv.org/abs/2101.02402)...), and is built around the idea that they all share common parameters and methods. It supports [Byte Pair Encoding (BPE)](https://arxiv.org/abs/2301.11975) and data augmentation.
**Documentation:** [miditok.readthedocs.com](https://miditok.readthedocs.io/en/latest/index.html)
## Install
```shell
pip install miditok
```
MidiTok uses [MIDIToolkit](https://github.com/YatingMusic/miditoolkit), which itself uses [Mido](https://github.com/mido/mido) to read and write MIDI files, and BPE is backed by [Hugging Face 🤗tokenizers](https://github.com/huggingface/tokenizers) for super-fast encoding.
## Usage example
The most basic and useful methods are summarized here. And [here](colab-notebooks/Full_Example_HuggingFace_GPT2_Transformer.ipynb) is a simple notebook example showing how to use Hugging Face models to generate music, with MidiTok taking care of tokenizing MIDIs.
```python
from miditok import REMI
from miditok.utils import get_midi_programs
from miditoolkit import MidiFile
from pathlib import Path
# Creates the tokenizer and loads a MIDI
tokenizer = REMI() # using the default parameters, read the documentation to customize your tokenizer
midi = MidiFile('path/to/your_midi.mid')
# Converts MIDI to tokens, and back to a MIDI
tokens = tokenizer(midi) # calling it will automatically detect MIDIs, paths and tokens before the conversion
converted_back_midi = tokenizer(tokens, get_midi_programs(midi)) # PyTorch / Tensorflow / Numpy tensors supported
# Converts MIDI files to tokens saved as JSON files
midi_paths = list(Path("path", "to", "dataset").glob("**/*.mid"))
data_augmentation_offsets = [2, 1, 1] # data augmentation on 2 pitch octaves, 1 velocity and 1 duration values
tokenizer.tokenize_midi_dataset(midi_paths, Path("path", "to", "tokens_noBPE"),
data_augment_offsets=data_augmentation_offsets)
# Constructs the vocabulary with BPE, from the tokenized files
tokenizer.learn_bpe(
vocab_size=500,
tokens_paths=list(Path("path", "to", "tokens_noBPE").glob("**/*.json")),
start_from_empty_voc=False,
)
# Saving our tokenizer, to retrieve it back later with the load_params method
tokenizer.save_params(Path("path", "to", "save", "tokenizer"))
# Converts the tokenized musics into tokens with BPE
tokenizer.apply_bpe_to_dataset(Path('path', 'to', 'tokens_noBPE'), Path('path', 'to', 'tokens_BPE'))
```
## Tokenizations
MidiTok implements the tokenizations: (links to original papers)
* [REMI](https://dl.acm.org/doi/10.1145/3394171.3413671)
* [REMI+](https://openreview.net/forum?id=NyR8OZFHw6i)
* [MIDI-Like](https://link.springer.com/article/10.1007/s00521-018-3758-9)
* [TSD](https://arxiv.org/abs/2301.11975)
* [Structured](https://arxiv.org/abs/2107.05944)
* [CPWord](https://ojs.aaai.org/index.php/AAAI/article/view/16091)
* [Octuple](https://aclanthology.org/2021.findings-acl.70)
* [MuMIDI](https://dl.acm.org/doi/10.1145/3394171.3413721)
* [MMM](https://arxiv.org/abs/2008.06048)
You can find short presentations in the [documentation](https://miditok.readthedocs.io/en/latest/tokenizations.html).
## Limitations
Tokenizations using Bar tokens (REMI, Compound Word and MuMIDI) **only considers a 4/x time signature** for now. This means that each bar is considered covering 4 beats.
REMI+ and Octuple support it.
## Contributions
Contributions are gratefully welcomed, feel free to open an issue or send a PR if you want to add a tokenization or speed up the code. You can read the [contribution guide](CONTRIBUTING.md) for details.
### Todos
* Extend Time Signature to all tokenizations
* Control Change messages
* Option to represent pitch values as pitch intervals, as [it seems to improve performances](https://ismir2022program.ismir.net/lbd_369.html).
* Speeding up MIDI read / load (Rust / C++ binding)
* Data augmentation on duration values at the MIDI level
## Citation
If you use MidiTok for your research, a citation in your manuscript would be gladly appreciated. ❤️
[**MidiTok paper**](https://archives.ismir.net/ismir2021/latebreaking/000005.pdf)
```bibtex
@inproceedings{miditok2021,
title={{MidiTok}: A Python package for {MIDI} file tokenization},
author={Fradet, Nathan and Briot, Jean-Pierre and Chhel, Fabien and El Fallah Seghrouchni, Amal and Gutowski, Nicolas},
booktitle={Extended Abstracts for the Late-Breaking Demo Session of the 22nd International Society for Music Information Retrieval Conference},
year={2021},
url={https://archives.ismir.net/ismir2021/latebreaking/000005.pdf},
}
```
The BibTeX citations of all tokenizations can be found [in the documentation](https://miditok.readthedocs.io/en/latest/citations.html)
## Acknowledgments
Special thanks to all the contributors.
We acknowledge [Aubay](https://blog.aubay.com/index.php/language/en/home/?lang=en), the [LIP6](https://www.lip6.fr/?LANG=en), [LERIA](http://blog.univ-angers.fr/leria/n) and [ESEO](https://eseo.fr/en) for the initial financing and support.
%package -n python3-miditok
Summary: A convenient MIDI tokenizer for Deep Learning networks, with multiple encoding strategies
Provides: python-miditok
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-miditok
# MidiTok
Python package to tokenize MIDI music files, presented at the ISMIR 2021 LBD.

[](https://pypi.python.org/pypi/miditok/)
[](https://www.python.org/downloads/release/)
[](https://miditok.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/Natooz/MidiTok/actions/workflows/pytest.yml)
[](https://codecov.io/gh/Natooz/MidiTok)
[](https://github.com/Natooz/MidiTok/blob/main/LICENSE)
[](https://pepy.tech/project/MidiTok)
[](https://github.com/psf/black)
Using Deep Learning with symbolic music ? MidiTok can take care of converting (tokenizing) your MIDI files into tokens, ready to be fed to models such as Transformer, for any generation, transcription or MIR task.
MidiTok features most known [MIDI tokenizations](https://miditok.readthedocs.io/en/latest/tokenizations.html) (e.g. [REMI](https://arxiv.org/abs/2002.00212), [Compound Word](https://arxiv.org/abs/2101.02402)...), and is built around the idea that they all share common parameters and methods. It supports [Byte Pair Encoding (BPE)](https://arxiv.org/abs/2301.11975) and data augmentation.
**Documentation:** [miditok.readthedocs.com](https://miditok.readthedocs.io/en/latest/index.html)
## Install
```shell
pip install miditok
```
MidiTok uses [MIDIToolkit](https://github.com/YatingMusic/miditoolkit), which itself uses [Mido](https://github.com/mido/mido) to read and write MIDI files, and BPE is backed by [Hugging Face 🤗tokenizers](https://github.com/huggingface/tokenizers) for super-fast encoding.
## Usage example
The most basic and useful methods are summarized here. And [here](colab-notebooks/Full_Example_HuggingFace_GPT2_Transformer.ipynb) is a simple notebook example showing how to use Hugging Face models to generate music, with MidiTok taking care of tokenizing MIDIs.
```python
from miditok import REMI
from miditok.utils import get_midi_programs
from miditoolkit import MidiFile
from pathlib import Path
# Creates the tokenizer and loads a MIDI
tokenizer = REMI() # using the default parameters, read the documentation to customize your tokenizer
midi = MidiFile('path/to/your_midi.mid')
# Converts MIDI to tokens, and back to a MIDI
tokens = tokenizer(midi) # calling it will automatically detect MIDIs, paths and tokens before the conversion
converted_back_midi = tokenizer(tokens, get_midi_programs(midi)) # PyTorch / Tensorflow / Numpy tensors supported
# Converts MIDI files to tokens saved as JSON files
midi_paths = list(Path("path", "to", "dataset").glob("**/*.mid"))
data_augmentation_offsets = [2, 1, 1] # data augmentation on 2 pitch octaves, 1 velocity and 1 duration values
tokenizer.tokenize_midi_dataset(midi_paths, Path("path", "to", "tokens_noBPE"),
data_augment_offsets=data_augmentation_offsets)
# Constructs the vocabulary with BPE, from the tokenized files
tokenizer.learn_bpe(
vocab_size=500,
tokens_paths=list(Path("path", "to", "tokens_noBPE").glob("**/*.json")),
start_from_empty_voc=False,
)
# Saving our tokenizer, to retrieve it back later with the load_params method
tokenizer.save_params(Path("path", "to", "save", "tokenizer"))
# Converts the tokenized musics into tokens with BPE
tokenizer.apply_bpe_to_dataset(Path('path', 'to', 'tokens_noBPE'), Path('path', 'to', 'tokens_BPE'))
```
## Tokenizations
MidiTok implements the tokenizations: (links to original papers)
* [REMI](https://dl.acm.org/doi/10.1145/3394171.3413671)
* [REMI+](https://openreview.net/forum?id=NyR8OZFHw6i)
* [MIDI-Like](https://link.springer.com/article/10.1007/s00521-018-3758-9)
* [TSD](https://arxiv.org/abs/2301.11975)
* [Structured](https://arxiv.org/abs/2107.05944)
* [CPWord](https://ojs.aaai.org/index.php/AAAI/article/view/16091)
* [Octuple](https://aclanthology.org/2021.findings-acl.70)
* [MuMIDI](https://dl.acm.org/doi/10.1145/3394171.3413721)
* [MMM](https://arxiv.org/abs/2008.06048)
You can find short presentations in the [documentation](https://miditok.readthedocs.io/en/latest/tokenizations.html).
## Limitations
Tokenizations using Bar tokens (REMI, Compound Word and MuMIDI) **only considers a 4/x time signature** for now. This means that each bar is considered covering 4 beats.
REMI+ and Octuple support it.
## Contributions
Contributions are gratefully welcomed, feel free to open an issue or send a PR if you want to add a tokenization or speed up the code. You can read the [contribution guide](CONTRIBUTING.md) for details.
### Todos
* Extend Time Signature to all tokenizations
* Control Change messages
* Option to represent pitch values as pitch intervals, as [it seems to improve performances](https://ismir2022program.ismir.net/lbd_369.html).
* Speeding up MIDI read / load (Rust / C++ binding)
* Data augmentation on duration values at the MIDI level
## Citation
If you use MidiTok for your research, a citation in your manuscript would be gladly appreciated. ❤️
[**MidiTok paper**](https://archives.ismir.net/ismir2021/latebreaking/000005.pdf)
```bibtex
@inproceedings{miditok2021,
title={{MidiTok}: A Python package for {MIDI} file tokenization},
author={Fradet, Nathan and Briot, Jean-Pierre and Chhel, Fabien and El Fallah Seghrouchni, Amal and Gutowski, Nicolas},
booktitle={Extended Abstracts for the Late-Breaking Demo Session of the 22nd International Society for Music Information Retrieval Conference},
year={2021},
url={https://archives.ismir.net/ismir2021/latebreaking/000005.pdf},
}
```
The BibTeX citations of all tokenizations can be found [in the documentation](https://miditok.readthedocs.io/en/latest/citations.html)
## Acknowledgments
Special thanks to all the contributors.
We acknowledge [Aubay](https://blog.aubay.com/index.php/language/en/home/?lang=en), the [LIP6](https://www.lip6.fr/?LANG=en), [LERIA](http://blog.univ-angers.fr/leria/n) and [ESEO](https://eseo.fr/en) for the initial financing and support.
%package help
Summary: Development documents and examples for miditok
Provides: python3-miditok-doc
%description help
# MidiTok
Python package to tokenize MIDI music files, presented at the ISMIR 2021 LBD.

[](https://pypi.python.org/pypi/miditok/)
[](https://www.python.org/downloads/release/)
[](https://miditok.readthedocs.io/en/latest/?badge=latest)
[](https://github.com/Natooz/MidiTok/actions/workflows/pytest.yml)
[](https://codecov.io/gh/Natooz/MidiTok)
[](https://github.com/Natooz/MidiTok/blob/main/LICENSE)
[](https://pepy.tech/project/MidiTok)
[](https://github.com/psf/black)
Using Deep Learning with symbolic music ? MidiTok can take care of converting (tokenizing) your MIDI files into tokens, ready to be fed to models such as Transformer, for any generation, transcription or MIR task.
MidiTok features most known [MIDI tokenizations](https://miditok.readthedocs.io/en/latest/tokenizations.html) (e.g. [REMI](https://arxiv.org/abs/2002.00212), [Compound Word](https://arxiv.org/abs/2101.02402)...), and is built around the idea that they all share common parameters and methods. It supports [Byte Pair Encoding (BPE)](https://arxiv.org/abs/2301.11975) and data augmentation.
**Documentation:** [miditok.readthedocs.com](https://miditok.readthedocs.io/en/latest/index.html)
## Install
```shell
pip install miditok
```
MidiTok uses [MIDIToolkit](https://github.com/YatingMusic/miditoolkit), which itself uses [Mido](https://github.com/mido/mido) to read and write MIDI files, and BPE is backed by [Hugging Face 🤗tokenizers](https://github.com/huggingface/tokenizers) for super-fast encoding.
## Usage example
The most basic and useful methods are summarized here. And [here](colab-notebooks/Full_Example_HuggingFace_GPT2_Transformer.ipynb) is a simple notebook example showing how to use Hugging Face models to generate music, with MidiTok taking care of tokenizing MIDIs.
```python
from miditok import REMI
from miditok.utils import get_midi_programs
from miditoolkit import MidiFile
from pathlib import Path
# Creates the tokenizer and loads a MIDI
tokenizer = REMI() # using the default parameters, read the documentation to customize your tokenizer
midi = MidiFile('path/to/your_midi.mid')
# Converts MIDI to tokens, and back to a MIDI
tokens = tokenizer(midi) # calling it will automatically detect MIDIs, paths and tokens before the conversion
converted_back_midi = tokenizer(tokens, get_midi_programs(midi)) # PyTorch / Tensorflow / Numpy tensors supported
# Converts MIDI files to tokens saved as JSON files
midi_paths = list(Path("path", "to", "dataset").glob("**/*.mid"))
data_augmentation_offsets = [2, 1, 1] # data augmentation on 2 pitch octaves, 1 velocity and 1 duration values
tokenizer.tokenize_midi_dataset(midi_paths, Path("path", "to", "tokens_noBPE"),
data_augment_offsets=data_augmentation_offsets)
# Constructs the vocabulary with BPE, from the tokenized files
tokenizer.learn_bpe(
vocab_size=500,
tokens_paths=list(Path("path", "to", "tokens_noBPE").glob("**/*.json")),
start_from_empty_voc=False,
)
# Saving our tokenizer, to retrieve it back later with the load_params method
tokenizer.save_params(Path("path", "to", "save", "tokenizer"))
# Converts the tokenized musics into tokens with BPE
tokenizer.apply_bpe_to_dataset(Path('path', 'to', 'tokens_noBPE'), Path('path', 'to', 'tokens_BPE'))
```
## Tokenizations
MidiTok implements the tokenizations: (links to original papers)
* [REMI](https://dl.acm.org/doi/10.1145/3394171.3413671)
* [REMI+](https://openreview.net/forum?id=NyR8OZFHw6i)
* [MIDI-Like](https://link.springer.com/article/10.1007/s00521-018-3758-9)
* [TSD](https://arxiv.org/abs/2301.11975)
* [Structured](https://arxiv.org/abs/2107.05944)
* [CPWord](https://ojs.aaai.org/index.php/AAAI/article/view/16091)
* [Octuple](https://aclanthology.org/2021.findings-acl.70)
* [MuMIDI](https://dl.acm.org/doi/10.1145/3394171.3413721)
* [MMM](https://arxiv.org/abs/2008.06048)
You can find short presentations in the [documentation](https://miditok.readthedocs.io/en/latest/tokenizations.html).
## Limitations
Tokenizations using Bar tokens (REMI, Compound Word and MuMIDI) **only considers a 4/x time signature** for now. This means that each bar is considered covering 4 beats.
REMI+ and Octuple support it.
## Contributions
Contributions are gratefully welcomed, feel free to open an issue or send a PR if you want to add a tokenization or speed up the code. You can read the [contribution guide](CONTRIBUTING.md) for details.
### Todos
* Extend Time Signature to all tokenizations
* Control Change messages
* Option to represent pitch values as pitch intervals, as [it seems to improve performances](https://ismir2022program.ismir.net/lbd_369.html).
* Speeding up MIDI read / load (Rust / C++ binding)
* Data augmentation on duration values at the MIDI level
## Citation
If you use MidiTok for your research, a citation in your manuscript would be gladly appreciated. ❤️
[**MidiTok paper**](https://archives.ismir.net/ismir2021/latebreaking/000005.pdf)
```bibtex
@inproceedings{miditok2021,
title={{MidiTok}: A Python package for {MIDI} file tokenization},
author={Fradet, Nathan and Briot, Jean-Pierre and Chhel, Fabien and El Fallah Seghrouchni, Amal and Gutowski, Nicolas},
booktitle={Extended Abstracts for the Late-Breaking Demo Session of the 22nd International Society for Music Information Retrieval Conference},
year={2021},
url={https://archives.ismir.net/ismir2021/latebreaking/000005.pdf},
}
```
The BibTeX citations of all tokenizations can be found [in the documentation](https://miditok.readthedocs.io/en/latest/citations.html)
## Acknowledgments
Special thanks to all the contributors.
We acknowledge [Aubay](https://blog.aubay.com/index.php/language/en/home/?lang=en), the [LIP6](https://www.lip6.fr/?LANG=en), [LERIA](http://blog.univ-angers.fr/leria/n) and [ESEO](https://eseo.fr/en) for the initial financing and support.
%prep
%autosetup -n miditok-2.0.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-miditok -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.6-1
- Package Spec generated
|