summaryrefslogtreecommitdiff
path: root/python-mixmasta.spec
blob: eea1f49df7f1fa1fd6587449956ad1665ced0902 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
%global _empty_manifest_terminate_build 0
Name:		python-mixmasta
Version:	0.6.9
Release:	1
Summary:	A library for common scientific model transforms
License:	MIT license
URL:		https://github.com/jataware/mixmasta
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/42/21/cf29f591d0a0fa76e0f4ad46febc7e7a63dcd84251054513b67d2531c5cc/mixmasta-0.6.9.tar.gz
BuildArch:	noarch

Requires:	python3-bump2version
Requires:	python3-Click
Requires:	python3-coverage
Requires:	python3-Cython
Requires:	python3-flake8
Requires:	python3-fuzzywuzzy
Requires:	python3-GDAL
Requires:	python3-geofeather
Requires:	python3-geopandas
Requires:	python3-netCDF4
Requires:	python3-numpy
Requires:	python3-openpyxl
Requires:	python3-pip
Requires:	python3-pydantic
Requires:	python3-pyproj
Requires:	python3-Levenshtein
Requires:	python3-rasterio
Requires:	python3-Rtree
Requires:	python3-Shapely
Requires:	python3-Sphinx
Requires:	python3-tox
Requires:	python3-tqdm
Requires:	python3-twine
Requires:	python3-watchdog
Requires:	python3-wheel
Requires:	python3-xarray
Requires:	python3-xlrd

%description
# mixmasta
[![Python Tests](https://github.com/jataware/mixmasta/actions/workflows/python.yaml/badge.svg)](https://github.com/jataware/mixmasta/actions/workflows/python.yaml)

A library for common scientific model transforms. This library enables fast and intuitive transforms including:

* Converting a `geotiff` to a `csv`
* Converting a `NetCDF` to a `csv`
* Geocoding `csv`, `xls`, and `xlsx` data that contains latitude and longitude


## Setup

See `docs/docker.md` for instructions on running Mixmasta in Docker (easiest!).

Ensure you have a working installation of [GDAL](https://trac.osgeo.org/gdal/wiki/FAQInstallationAndBuilding#FAQ-InstallationandBuilding)

You also need to ensure that `numpy` is installed prior to `mixmasta` installation. This is an artifact of GDAL, which will build incorrectly if `numpy` is not already configured:

```
pip install numpy==1.20.1
pip install mixmasta
```

> Note: if you had a prior installation of GDAL you may need to run `pip install mixmasta --no-cache-dir` in a clean environment.

You must install the GADM2 and GADM3 data with:

```
mixmasta download
```

## Usage


Examples can be found in the `input` directory.

Convert a geotiff to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)
```

Note that you should specify the data band of the geotiff to process if it is multi-band. You may also specify the name of the feature column to produce. You may optionally specify a `date` if the geotiff has an associated date. For example:

Convert a NetCDF to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.netcdf2df('tos_O1_2001-2002.nc')
```

Geocode a dataframe:

```
from mixmasta import mixmasta as mix

# First, load in the geotiff as a dataframe
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)

# next, we can geocode the dataframe to the admin-level desired (`admin2` or `admin3`)
# by specifying the names of the x and y columns
# in this case, we will geocode to admin2 where x,y are are 'longitude' and 'latitude', respectively.
df_g = mix.geocode("admin2", df, x='longitude', y='latitude')
```

## Running with CLI

After cloning the repository and changing to the `mixmasta` directory, you can run mixmasta via the command line.

Set-up:

While you can point `mixmasta` to any file you would like to transform, the examples below assume your file is in the `inputs` folder; the transformed `.csv` file will be written to the `outputs` folder.

- Transform geotiff to geocoded csv:
```
mixmasta mix --xform=geotiff --input_file=chirps-v2.0.2021.01.3.tif --output_file=geotiffTEST.csv --geo=admin2 --feature_name=rainfall --band=1 --date='5/4/2010' --x=longitude --y=latitude
```

- Transform geotiff to csv:
```
mixmasta mix --xform=geotiff --input_file=maxhop1.tif --output_file=maxhopOUT.csv --geo=admin2 --feature_name=probabilty --band=1 --x=longitude --y=latitude
```

- Transform netcdf to geocoded csv:

```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv --geo=admin2 --x=lon --y=lat
```

- Transform netcdf to csv:
```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv
```

-geocode an existing csv file:

```
mixmasta mix --xform=geocode --input_file=no_geo.csv --geo=admin3 --output_file=geoed_no_geo.csv --x=longitude --y=latitude
```

## World Modelers Specific Normalization

For the World Modelers program, it is necessary to convert arbitrary `csv`, `geotiff`, and `netcdf` files into a CauseMos compliant format. This can be accomplished by leveraging a `mapping` annotation file and the `causemosify` command. The output is a `gzipped` `parquet` file. This may be invoked with:

```
mixmasta causemosify --input_file=chirps-v2.0.2021.01.3.tif --mapper=mapper.json --geo=admin3 --output_file=causemosified_example
```

This will produce a file called `causemosified_example.parquet.gzip` which can be read using Pandas with:

```
pd.read_parquet('causemosified_example.parquet.gzip')
```

## Other Documents
- Docker Instructions: `docs/docker.md`
- Geo Entity Resolution Description: `docs/geo-tentity-resolution.md`
- Package Testing in SpaceTag Env: `docs/spacetag-test.md`

## Credits

This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.


# History

## 0.1.0 (2021-02-24)

-   First release on PyPI.





%package -n python3-mixmasta
Summary:	A library for common scientific model transforms
Provides:	python-mixmasta
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mixmasta
# mixmasta
[![Python Tests](https://github.com/jataware/mixmasta/actions/workflows/python.yaml/badge.svg)](https://github.com/jataware/mixmasta/actions/workflows/python.yaml)

A library for common scientific model transforms. This library enables fast and intuitive transforms including:

* Converting a `geotiff` to a `csv`
* Converting a `NetCDF` to a `csv`
* Geocoding `csv`, `xls`, and `xlsx` data that contains latitude and longitude


## Setup

See `docs/docker.md` for instructions on running Mixmasta in Docker (easiest!).

Ensure you have a working installation of [GDAL](https://trac.osgeo.org/gdal/wiki/FAQInstallationAndBuilding#FAQ-InstallationandBuilding)

You also need to ensure that `numpy` is installed prior to `mixmasta` installation. This is an artifact of GDAL, which will build incorrectly if `numpy` is not already configured:

```
pip install numpy==1.20.1
pip install mixmasta
```

> Note: if you had a prior installation of GDAL you may need to run `pip install mixmasta --no-cache-dir` in a clean environment.

You must install the GADM2 and GADM3 data with:

```
mixmasta download
```

## Usage


Examples can be found in the `input` directory.

Convert a geotiff to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)
```

Note that you should specify the data band of the geotiff to process if it is multi-band. You may also specify the name of the feature column to produce. You may optionally specify a `date` if the geotiff has an associated date. For example:

Convert a NetCDF to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.netcdf2df('tos_O1_2001-2002.nc')
```

Geocode a dataframe:

```
from mixmasta import mixmasta as mix

# First, load in the geotiff as a dataframe
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)

# next, we can geocode the dataframe to the admin-level desired (`admin2` or `admin3`)
# by specifying the names of the x and y columns
# in this case, we will geocode to admin2 where x,y are are 'longitude' and 'latitude', respectively.
df_g = mix.geocode("admin2", df, x='longitude', y='latitude')
```

## Running with CLI

After cloning the repository and changing to the `mixmasta` directory, you can run mixmasta via the command line.

Set-up:

While you can point `mixmasta` to any file you would like to transform, the examples below assume your file is in the `inputs` folder; the transformed `.csv` file will be written to the `outputs` folder.

- Transform geotiff to geocoded csv:
```
mixmasta mix --xform=geotiff --input_file=chirps-v2.0.2021.01.3.tif --output_file=geotiffTEST.csv --geo=admin2 --feature_name=rainfall --band=1 --date='5/4/2010' --x=longitude --y=latitude
```

- Transform geotiff to csv:
```
mixmasta mix --xform=geotiff --input_file=maxhop1.tif --output_file=maxhopOUT.csv --geo=admin2 --feature_name=probabilty --band=1 --x=longitude --y=latitude
```

- Transform netcdf to geocoded csv:

```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv --geo=admin2 --x=lon --y=lat
```

- Transform netcdf to csv:
```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv
```

-geocode an existing csv file:

```
mixmasta mix --xform=geocode --input_file=no_geo.csv --geo=admin3 --output_file=geoed_no_geo.csv --x=longitude --y=latitude
```

## World Modelers Specific Normalization

For the World Modelers program, it is necessary to convert arbitrary `csv`, `geotiff`, and `netcdf` files into a CauseMos compliant format. This can be accomplished by leveraging a `mapping` annotation file and the `causemosify` command. The output is a `gzipped` `parquet` file. This may be invoked with:

```
mixmasta causemosify --input_file=chirps-v2.0.2021.01.3.tif --mapper=mapper.json --geo=admin3 --output_file=causemosified_example
```

This will produce a file called `causemosified_example.parquet.gzip` which can be read using Pandas with:

```
pd.read_parquet('causemosified_example.parquet.gzip')
```

## Other Documents
- Docker Instructions: `docs/docker.md`
- Geo Entity Resolution Description: `docs/geo-tentity-resolution.md`
- Package Testing in SpaceTag Env: `docs/spacetag-test.md`

## Credits

This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.


# History

## 0.1.0 (2021-02-24)

-   First release on PyPI.





%package help
Summary:	Development documents and examples for mixmasta
Provides:	python3-mixmasta-doc
%description help
# mixmasta
[![Python Tests](https://github.com/jataware/mixmasta/actions/workflows/python.yaml/badge.svg)](https://github.com/jataware/mixmasta/actions/workflows/python.yaml)

A library for common scientific model transforms. This library enables fast and intuitive transforms including:

* Converting a `geotiff` to a `csv`
* Converting a `NetCDF` to a `csv`
* Geocoding `csv`, `xls`, and `xlsx` data that contains latitude and longitude


## Setup

See `docs/docker.md` for instructions on running Mixmasta in Docker (easiest!).

Ensure you have a working installation of [GDAL](https://trac.osgeo.org/gdal/wiki/FAQInstallationAndBuilding#FAQ-InstallationandBuilding)

You also need to ensure that `numpy` is installed prior to `mixmasta` installation. This is an artifact of GDAL, which will build incorrectly if `numpy` is not already configured:

```
pip install numpy==1.20.1
pip install mixmasta
```

> Note: if you had a prior installation of GDAL you may need to run `pip install mixmasta --no-cache-dir` in a clean environment.

You must install the GADM2 and GADM3 data with:

```
mixmasta download
```

## Usage


Examples can be found in the `input` directory.

Convert a geotiff to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)
```

Note that you should specify the data band of the geotiff to process if it is multi-band. You may also specify the name of the feature column to produce. You may optionally specify a `date` if the geotiff has an associated date. For example:

Convert a NetCDF to a dataframe with:

```
from mixmasta import mixmasta as mix
df = mix.netcdf2df('tos_O1_2001-2002.nc')
```

Geocode a dataframe:

```
from mixmasta import mixmasta as mix

# First, load in the geotiff as a dataframe
df = mix.raster2df('chirps-v2.0.2021.01.3.tif', feature_name='rainfall', band=1)

# next, we can geocode the dataframe to the admin-level desired (`admin2` or `admin3`)
# by specifying the names of the x and y columns
# in this case, we will geocode to admin2 where x,y are are 'longitude' and 'latitude', respectively.
df_g = mix.geocode("admin2", df, x='longitude', y='latitude')
```

## Running with CLI

After cloning the repository and changing to the `mixmasta` directory, you can run mixmasta via the command line.

Set-up:

While you can point `mixmasta` to any file you would like to transform, the examples below assume your file is in the `inputs` folder; the transformed `.csv` file will be written to the `outputs` folder.

- Transform geotiff to geocoded csv:
```
mixmasta mix --xform=geotiff --input_file=chirps-v2.0.2021.01.3.tif --output_file=geotiffTEST.csv --geo=admin2 --feature_name=rainfall --band=1 --date='5/4/2010' --x=longitude --y=latitude
```

- Transform geotiff to csv:
```
mixmasta mix --xform=geotiff --input_file=maxhop1.tif --output_file=maxhopOUT.csv --geo=admin2 --feature_name=probabilty --band=1 --x=longitude --y=latitude
```

- Transform netcdf to geocoded csv:

```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv --geo=admin2 --x=lon --y=lat
```

- Transform netcdf to csv:
```
mixmasta mix --xform=netcdf --input_file=tos_O1_2001-2002.nc --output_file=netcdf.csv
```

-geocode an existing csv file:

```
mixmasta mix --xform=geocode --input_file=no_geo.csv --geo=admin3 --output_file=geoed_no_geo.csv --x=longitude --y=latitude
```

## World Modelers Specific Normalization

For the World Modelers program, it is necessary to convert arbitrary `csv`, `geotiff`, and `netcdf` files into a CauseMos compliant format. This can be accomplished by leveraging a `mapping` annotation file and the `causemosify` command. The output is a `gzipped` `parquet` file. This may be invoked with:

```
mixmasta causemosify --input_file=chirps-v2.0.2021.01.3.tif --mapper=mapper.json --geo=admin3 --output_file=causemosified_example
```

This will produce a file called `causemosified_example.parquet.gzip` which can be read using Pandas with:

```
pd.read_parquet('causemosified_example.parquet.gzip')
```

## Other Documents
- Docker Instructions: `docs/docker.md`
- Geo Entity Resolution Description: `docs/geo-tentity-resolution.md`
- Package Testing in SpaceTag Env: `docs/spacetag-test.md`

## Credits

This package was created with [Cookiecutter](https://github.com/audreyr/cookiecutter) and the [audreyr/cookiecutter-pypackage](https://github.com/audreyr/cookiecutter-pypackage) project template.


# History

## 0.1.0 (2021-02-24)

-   First release on PyPI.





%prep
%autosetup -n mixmasta-0.6.9

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mixmasta -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.9-1
- Package Spec generated