diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-05 11:16:14 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-05 11:16:14 +0000 |
commit | 0dceede095c0c391c3f34273da6a9da8a2dd16e8 (patch) | |
tree | 9b3d4aebde19a904802db72eb49d320e587b5ddb | |
parent | f7da5632450b1aff2022686e71e914ce67ba7900 (diff) |
automatic import of python-ml-insightsopeneuler20.03
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-ml-insights.spec | 144 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 146 insertions, 0 deletions
@@ -0,0 +1 @@ +/ml_insights-1.0.2.tar.gz diff --git a/python-ml-insights.spec b/python-ml-insights.spec new file mode 100644 index 0000000..ed224e9 --- /dev/null +++ b/python-ml-insights.spec @@ -0,0 +1,144 @@ +%global _empty_manifest_terminate_build 0 +Name: python-ml-insights +Version: 1.0.2 +Release: 1 +Summary: Package to calibrate and understand ML Models +License: MIT license +URL: http://ml-insights.readthedocs.io/en/latest/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/21/a3/b43ed7c627ceabb7c30c583e3bd67a7d15be10722da2a1d8c0320c99ff82/ml_insights-1.0.2.tar.gz +BuildArch: noarch + +Requires: python3-pandas +Requires: python3-numpy +Requires: python3-matplotlib +Requires: python3-scikit-learn +Requires: python3-scipy +Requires: python3-splinecalib + +%description +Welcome to ML-Insights! +This package contains two core sets of functions: +1) Calibration +2) Interpreting Models +For probability calibration, the main class is `SplineCalib`. Given a set of model outputs and the "true" classes, you can `fit` a SplineCalib object. That object can then be used to `calibrate` future model predictions post-hoc. + >>> model.fit(X_train, y_train) + >>> sc = mli.SplineCalib() + >>> sc.fit(X_valid, y_valid) + >>> uncalib_preds = model.predict_proba(X_test) + >>> calib_preds = sc.calibrate(uncalib_preds) + >>> cv_preds = mli.cv_predictions(model, X_train, y_train) + >>> model.fit(X_train, y_train) + >>> sc = mli.SplineCalib() + >>> sc.fit(cv_preds, y_train) + >>> uncalib_preds = model.predict_proba(X_test) + >>> calib_preds = sc.calibrate(uncalib_preds) +For model interpretability, we provide the `ice_plot` and `histogram_pair` functions as well as other tools. + >>> rd = mli.get_range_dict(X_train) + >>> mli.ice_plot(model, X_test.sample(3), X_train.columns, rd) + >>> mli.histogram_pair(df.outcome, df.feature, bins=np.linspace(0,100,11)) +Please see the documentation and examples at the links below. +- `Documentation <https://ml-insights.readthedocs.io>`_ +- `Notebook Examples and Usage <https://github.com/numeristical/introspective/tree/master/examples>`_ + +%package -n python3-ml-insights +Summary: Package to calibrate and understand ML Models +Provides: python-ml-insights +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-ml-insights +Welcome to ML-Insights! +This package contains two core sets of functions: +1) Calibration +2) Interpreting Models +For probability calibration, the main class is `SplineCalib`. Given a set of model outputs and the "true" classes, you can `fit` a SplineCalib object. That object can then be used to `calibrate` future model predictions post-hoc. + >>> model.fit(X_train, y_train) + >>> sc = mli.SplineCalib() + >>> sc.fit(X_valid, y_valid) + >>> uncalib_preds = model.predict_proba(X_test) + >>> calib_preds = sc.calibrate(uncalib_preds) + >>> cv_preds = mli.cv_predictions(model, X_train, y_train) + >>> model.fit(X_train, y_train) + >>> sc = mli.SplineCalib() + >>> sc.fit(cv_preds, y_train) + >>> uncalib_preds = model.predict_proba(X_test) + >>> calib_preds = sc.calibrate(uncalib_preds) +For model interpretability, we provide the `ice_plot` and `histogram_pair` functions as well as other tools. + >>> rd = mli.get_range_dict(X_train) + >>> mli.ice_plot(model, X_test.sample(3), X_train.columns, rd) + >>> mli.histogram_pair(df.outcome, df.feature, bins=np.linspace(0,100,11)) +Please see the documentation and examples at the links below. +- `Documentation <https://ml-insights.readthedocs.io>`_ +- `Notebook Examples and Usage <https://github.com/numeristical/introspective/tree/master/examples>`_ + +%package help +Summary: Development documents and examples for ml-insights +Provides: python3-ml-insights-doc +%description help +Welcome to ML-Insights! +This package contains two core sets of functions: +1) Calibration +2) Interpreting Models +For probability calibration, the main class is `SplineCalib`. Given a set of model outputs and the "true" classes, you can `fit` a SplineCalib object. That object can then be used to `calibrate` future model predictions post-hoc. + >>> model.fit(X_train, y_train) + >>> sc = mli.SplineCalib() + >>> sc.fit(X_valid, y_valid) + >>> uncalib_preds = model.predict_proba(X_test) + >>> calib_preds = sc.calibrate(uncalib_preds) + >>> cv_preds = mli.cv_predictions(model, X_train, y_train) + >>> model.fit(X_train, y_train) + >>> sc = mli.SplineCalib() + >>> sc.fit(cv_preds, y_train) + >>> uncalib_preds = model.predict_proba(X_test) + >>> calib_preds = sc.calibrate(uncalib_preds) +For model interpretability, we provide the `ice_plot` and `histogram_pair` functions as well as other tools. + >>> rd = mli.get_range_dict(X_train) + >>> mli.ice_plot(model, X_test.sample(3), X_train.columns, rd) + >>> mli.histogram_pair(df.outcome, df.feature, bins=np.linspace(0,100,11)) +Please see the documentation and examples at the links below. +- `Documentation <https://ml-insights.readthedocs.io>`_ +- `Notebook Examples and Usage <https://github.com/numeristical/introspective/tree/master/examples>`_ + +%prep +%autosetup -n ml-insights-1.0.2 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-ml-insights -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.2-1 +- Package Spec generated @@ -0,0 +1 @@ +50dc1fa44316a9122625bc75059e19ca ml_insights-1.0.2.tar.gz |