1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
%global _empty_manifest_terminate_build 0
Name: python-mldock
Version: 0.9.2
Release: 1
Summary: A docker tool that helps put machine learning in places that empower ml developers
License: MIT License
URL: https://github.com/mldock/mldock
Source0: https://mirrors.aliyun.com/pypi/web/packages/04/a7/290fd243f44dc171733c89685bb79b6da0497f303350c30068be6156ae64/mldock-0.9.2.tar.gz
BuildArch: noarch
Requires: python3-appdirs
Requires: python3-future
Requires: python3-environs
Requires: python3-PyGithub
Requires: python3-boto3
Requires: python3-s3fs
Requires: python3-pyarrow
Requires: python3-click
Requires: python3-clickclick
Requires: python3-docker
Requires: python3-future
Requires: python3-requests
Requires: python3-boto3
Requires: python3-google-auth
Requires: python3-halo
Requires: python3-PyYAML
Requires: python3-pygrok
Requires: python3-gcsfs
Requires: python3-s3fs
Requires: python3-pyarrow
Requires: python3-wheel
Requires: python3-google-cloud-storage
Requires: python3-google-api-python-client
Requires: python3-gcsfs
Requires: python3-pyarrow
Requires: python3-pandas
Requires: python3-numpy
Requires: python3-protobuf
Requires: python3-Pillow
Requires: python3-sagemaker-training
Requires: python3-responses
Requires: python3-dataclasses
%description
# MLDOCK
A docker tool that helps put machine learning in places that empower ml developers

[](https://github.com/mldock/mldock/actions/workflows/ci.yml)
[](https://github.com/mldock/mldock/actions/workflows/python-publish.yml)

## What is MLDOCK?
MLDOCK builds in conveniences and the power of docker and frames it around the core machine learning tasks related to production.
As a tool this means MLDOCK's goals are:
- Provide tooling to improve the ML development workflow. ✅
- Enable portability of ml code betwen platforms and vendors (Sagemaker, AI Platform, Kubernetes, other container services). ✅
- Lower the barrier to entry by developing containers from templates. ✅
- Be ready out the box, using templates to get you started quickly. Bring only your code. ✅
- For any ML frameworks, runs in any orchestrator and on any cloud. (as long as it integrates with docker) ✅
What it is not:
- Service orchestrator ❌
- Training Scheduler ❌
- Hyperparameter tuner ❌
- Experiment Tracking ❌
Inspired by [Sagify](https://github.com/Kenza-AI/sagify), [Sagemaker Training Toolkit](https://github.com/aws/sagemaker-training-toolkit) and [Amazon Sagemaker](https://aws.amazon.com/sagemaker/).
## Getting Started
## Set up your environment
1. (Optional) Use virtual environment to manage dependencies.
2. Install `dotenv` easily configure environment.
```
pip install --user python-dotenv[cli]
```
note: dotenv allows configuring of environment through the `.env` file. MLDOCK uses ENVIRONMENT VARIABLES in the environment to find your `DOCKER_HOST`, `DOCKERHUB` credentials and even `AWS/GCP` credentials.
3. Create an .env with the following:
``` .env
# for windows and if you are using WSL1
DOCKER_HOST=tcp://127.0.0.1
# for WSL2 and linux (this is default and should work out of the box)
# but for consistency, set this dockerhost
DOCKER_HOST=unix://var/run/docker.sock
```
note: Now to switch environments just use dotenv as follows:
```
dotenv -f "/path/to/.env" run mldock local build --dir <my-project-path>
```
## Overview of MLDOCK command line
The MLDOCK command line utility provides a set of commands to streamline the machine learning container image development process.
The commands are grouped in to 3 functionality sets, namely:
| Command Group | Description |
| ------------- |:-------------:|
| container | A set of commands that support creating new containers, initialize and update containers. Also, provides commands for created new MLDOCK supported templates from previously built container images. |
| local | A set of commands to use during the development phase. Creating your trainer, prediction scripts and debugging the execution of scripts.|
| registry | A set of tools to help you push, pull and interact with image registries.|
## Create your first container image project
1. Install MLDOCK
The pip install is the only supported package manager at present. It is recommended that you use an environment manager, either virtualenv or conda will work.
```bash
pip install mldock[cli]
```
2. Setup local config for the mldock cli
This command sets up mldock cli with some nice to have defaults. It may even prompt you for some set up.
``` bash
mldock configure init
```
3. Initialize or create your first container
You will see a some of prompts to set up container.
```bash
mldock project init --dir my_ml_container
```
note:
- Just hit Return/Enter to accept all the defaults.
4. Build your container image locally
```bash
mldock local build --dir my_ml_container
```
5. Run your training locally
```bash
mldock local train --dir my_ml_container
```
6. Run your training locally
```bash
mldock local deploy --dir my_ml_container
```
## Putting your model in the cloud
#### Push to Dockerhub
1. Add the following to `.env`
```
DOCKERHUB_USERNAME=<your/user/name>
DOCKERHUB_PASSWORD=<your/dockerhub/password>
DOCKERHUB_REGISTRY=https://index.docker.io/v1/
DOCKERHUB_REPO=<your/user/repo/name>
```
2. Push your container to dockerhub
```bash
mldock registry push --dir my_ml_container --provider dockerhub --build
```
note: The flags allow you to stipulate configuration changes in the command.
`--build` says build the image before pushing. This is required initially since the dockerhub registry will prefix your container name. `--provider` tells MLDOCK to authenticate to dockerhub and push the container there.
**hint** In addition to `DockerHub`, both `AWS ECR` & `GCP GCR` are also supported.
## helpful tips
- docker compose sees my files as directories in mounted volume - *USE "./path/to/file" format* | https://stackoverflow.com/questions/42248198/how-to-mount-a-single-file-in-a-volume
- simlinks from my container have broken permissions in WSL2 | https://github.com/microsoft/WSL/issues/1475
%package -n python3-mldock
Summary: A docker tool that helps put machine learning in places that empower ml developers
Provides: python-mldock
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-mldock
# MLDOCK
A docker tool that helps put machine learning in places that empower ml developers

[](https://github.com/mldock/mldock/actions/workflows/ci.yml)
[](https://github.com/mldock/mldock/actions/workflows/python-publish.yml)

## What is MLDOCK?
MLDOCK builds in conveniences and the power of docker and frames it around the core machine learning tasks related to production.
As a tool this means MLDOCK's goals are:
- Provide tooling to improve the ML development workflow. ✅
- Enable portability of ml code betwen platforms and vendors (Sagemaker, AI Platform, Kubernetes, other container services). ✅
- Lower the barrier to entry by developing containers from templates. ✅
- Be ready out the box, using templates to get you started quickly. Bring only your code. ✅
- For any ML frameworks, runs in any orchestrator and on any cloud. (as long as it integrates with docker) ✅
What it is not:
- Service orchestrator ❌
- Training Scheduler ❌
- Hyperparameter tuner ❌
- Experiment Tracking ❌
Inspired by [Sagify](https://github.com/Kenza-AI/sagify), [Sagemaker Training Toolkit](https://github.com/aws/sagemaker-training-toolkit) and [Amazon Sagemaker](https://aws.amazon.com/sagemaker/).
## Getting Started
## Set up your environment
1. (Optional) Use virtual environment to manage dependencies.
2. Install `dotenv` easily configure environment.
```
pip install --user python-dotenv[cli]
```
note: dotenv allows configuring of environment through the `.env` file. MLDOCK uses ENVIRONMENT VARIABLES in the environment to find your `DOCKER_HOST`, `DOCKERHUB` credentials and even `AWS/GCP` credentials.
3. Create an .env with the following:
``` .env
# for windows and if you are using WSL1
DOCKER_HOST=tcp://127.0.0.1
# for WSL2 and linux (this is default and should work out of the box)
# but for consistency, set this dockerhost
DOCKER_HOST=unix://var/run/docker.sock
```
note: Now to switch environments just use dotenv as follows:
```
dotenv -f "/path/to/.env" run mldock local build --dir <my-project-path>
```
## Overview of MLDOCK command line
The MLDOCK command line utility provides a set of commands to streamline the machine learning container image development process.
The commands are grouped in to 3 functionality sets, namely:
| Command Group | Description |
| ------------- |:-------------:|
| container | A set of commands that support creating new containers, initialize and update containers. Also, provides commands for created new MLDOCK supported templates from previously built container images. |
| local | A set of commands to use during the development phase. Creating your trainer, prediction scripts and debugging the execution of scripts.|
| registry | A set of tools to help you push, pull and interact with image registries.|
## Create your first container image project
1. Install MLDOCK
The pip install is the only supported package manager at present. It is recommended that you use an environment manager, either virtualenv or conda will work.
```bash
pip install mldock[cli]
```
2. Setup local config for the mldock cli
This command sets up mldock cli with some nice to have defaults. It may even prompt you for some set up.
``` bash
mldock configure init
```
3. Initialize or create your first container
You will see a some of prompts to set up container.
```bash
mldock project init --dir my_ml_container
```
note:
- Just hit Return/Enter to accept all the defaults.
4. Build your container image locally
```bash
mldock local build --dir my_ml_container
```
5. Run your training locally
```bash
mldock local train --dir my_ml_container
```
6. Run your training locally
```bash
mldock local deploy --dir my_ml_container
```
## Putting your model in the cloud
#### Push to Dockerhub
1. Add the following to `.env`
```
DOCKERHUB_USERNAME=<your/user/name>
DOCKERHUB_PASSWORD=<your/dockerhub/password>
DOCKERHUB_REGISTRY=https://index.docker.io/v1/
DOCKERHUB_REPO=<your/user/repo/name>
```
2. Push your container to dockerhub
```bash
mldock registry push --dir my_ml_container --provider dockerhub --build
```
note: The flags allow you to stipulate configuration changes in the command.
`--build` says build the image before pushing. This is required initially since the dockerhub registry will prefix your container name. `--provider` tells MLDOCK to authenticate to dockerhub and push the container there.
**hint** In addition to `DockerHub`, both `AWS ECR` & `GCP GCR` are also supported.
## helpful tips
- docker compose sees my files as directories in mounted volume - *USE "./path/to/file" format* | https://stackoverflow.com/questions/42248198/how-to-mount-a-single-file-in-a-volume
- simlinks from my container have broken permissions in WSL2 | https://github.com/microsoft/WSL/issues/1475
%package help
Summary: Development documents and examples for mldock
Provides: python3-mldock-doc
%description help
# MLDOCK
A docker tool that helps put machine learning in places that empower ml developers

[](https://github.com/mldock/mldock/actions/workflows/ci.yml)
[](https://github.com/mldock/mldock/actions/workflows/python-publish.yml)

## What is MLDOCK?
MLDOCK builds in conveniences and the power of docker and frames it around the core machine learning tasks related to production.
As a tool this means MLDOCK's goals are:
- Provide tooling to improve the ML development workflow. ✅
- Enable portability of ml code betwen platforms and vendors (Sagemaker, AI Platform, Kubernetes, other container services). ✅
- Lower the barrier to entry by developing containers from templates. ✅
- Be ready out the box, using templates to get you started quickly. Bring only your code. ✅
- For any ML frameworks, runs in any orchestrator and on any cloud. (as long as it integrates with docker) ✅
What it is not:
- Service orchestrator ❌
- Training Scheduler ❌
- Hyperparameter tuner ❌
- Experiment Tracking ❌
Inspired by [Sagify](https://github.com/Kenza-AI/sagify), [Sagemaker Training Toolkit](https://github.com/aws/sagemaker-training-toolkit) and [Amazon Sagemaker](https://aws.amazon.com/sagemaker/).
## Getting Started
## Set up your environment
1. (Optional) Use virtual environment to manage dependencies.
2. Install `dotenv` easily configure environment.
```
pip install --user python-dotenv[cli]
```
note: dotenv allows configuring of environment through the `.env` file. MLDOCK uses ENVIRONMENT VARIABLES in the environment to find your `DOCKER_HOST`, `DOCKERHUB` credentials and even `AWS/GCP` credentials.
3. Create an .env with the following:
``` .env
# for windows and if you are using WSL1
DOCKER_HOST=tcp://127.0.0.1
# for WSL2 and linux (this is default and should work out of the box)
# but for consistency, set this dockerhost
DOCKER_HOST=unix://var/run/docker.sock
```
note: Now to switch environments just use dotenv as follows:
```
dotenv -f "/path/to/.env" run mldock local build --dir <my-project-path>
```
## Overview of MLDOCK command line
The MLDOCK command line utility provides a set of commands to streamline the machine learning container image development process.
The commands are grouped in to 3 functionality sets, namely:
| Command Group | Description |
| ------------- |:-------------:|
| container | A set of commands that support creating new containers, initialize and update containers. Also, provides commands for created new MLDOCK supported templates from previously built container images. |
| local | A set of commands to use during the development phase. Creating your trainer, prediction scripts and debugging the execution of scripts.|
| registry | A set of tools to help you push, pull and interact with image registries.|
## Create your first container image project
1. Install MLDOCK
The pip install is the only supported package manager at present. It is recommended that you use an environment manager, either virtualenv or conda will work.
```bash
pip install mldock[cli]
```
2. Setup local config for the mldock cli
This command sets up mldock cli with some nice to have defaults. It may even prompt you for some set up.
``` bash
mldock configure init
```
3. Initialize or create your first container
You will see a some of prompts to set up container.
```bash
mldock project init --dir my_ml_container
```
note:
- Just hit Return/Enter to accept all the defaults.
4. Build your container image locally
```bash
mldock local build --dir my_ml_container
```
5. Run your training locally
```bash
mldock local train --dir my_ml_container
```
6. Run your training locally
```bash
mldock local deploy --dir my_ml_container
```
## Putting your model in the cloud
#### Push to Dockerhub
1. Add the following to `.env`
```
DOCKERHUB_USERNAME=<your/user/name>
DOCKERHUB_PASSWORD=<your/dockerhub/password>
DOCKERHUB_REGISTRY=https://index.docker.io/v1/
DOCKERHUB_REPO=<your/user/repo/name>
```
2. Push your container to dockerhub
```bash
mldock registry push --dir my_ml_container --provider dockerhub --build
```
note: The flags allow you to stipulate configuration changes in the command.
`--build` says build the image before pushing. This is required initially since the dockerhub registry will prefix your container name. `--provider` tells MLDOCK to authenticate to dockerhub and push the container there.
**hint** In addition to `DockerHub`, both `AWS ECR` & `GCP GCR` are also supported.
## helpful tips
- docker compose sees my files as directories in mounted volume - *USE "./path/to/file" format* | https://stackoverflow.com/questions/42248198/how-to-mount-a-single-file-in-a-volume
- simlinks from my container have broken permissions in WSL2 | https://github.com/microsoft/WSL/issues/1475
%prep
%autosetup -n mldock-0.9.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-mldock -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.2-1
- Package Spec generated
|