summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-mlmodels.spec182
-rw-r--r--sources1
3 files changed, 184 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..eb78ef7 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/mlmodels-0.38.1.tar.gz
diff --git a/python-mlmodels.spec b/python-mlmodels.spec
new file mode 100644
index 0000000..2ac8410
--- /dev/null
+++ b/python-mlmodels.spec
@@ -0,0 +1,182 @@
+%global _empty_manifest_terminate_build 0
+Name: python-mlmodels
+Version: 0.38.1
+Release: 1
+Summary: Generic model API, Model Zoo in Tensorflow, Keras, Pytorch, Hyperparamter search
+License: Apache Software License
+URL: https://github.com/arita37/mlmodels
+Source0: https://mirrors.aliyun.com/pypi/web/packages/8a/69/23f54dc4af5166b555115d1f50b460c2f87462ab44df92d1debfcc3051d7/mlmodels-0.38.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-scipy
+Requires: python3-scikit-learn
+Requires: python3-numexpr
+Requires: python3-sqlalchemy
+Requires: python3-tensorflow
+Requires: python3-pytorch
+Requires: python3-optuna
+Requires: python3-lightgbm
+Requires: python3-mlflow
+
+%description
+### AutoML example in Gluon ([Example notebook](mlmodels/example/gluon_automl.ipynb))
+```python
+# import library
+import mlmodels
+import autogluon as ag
+#### Define model and data definitions
+model_uri = "model_gluon.gluon_automl.py"
+data_pars = {"train": True, "uri_type": "amazon_aws", "dt_name": "Inc"}
+model_pars = {"model_type": "tabular",
+ "learning_rate": ag.space.Real(1e-4, 1e-2, default=5e-4, log=True),
+ "activation": ag.space.Categorical(*tuple(["relu", "softrelu", "tanh"])),
+ "layers": ag.space.Categorical(
+ *tuple([[100], [1000], [200, 100], [300, 200, 100]])),
+ 'dropout_prob': ag.space.Real(0.0, 0.5, default=0.1),
+ 'num_boost_round': 10,
+ 'num_leaves': ag.space.Int(lower=26, upper=30, default=36)
+ }
+compute_pars = {
+ "hp_tune": True,
+ "num_epochs": 10,
+ "time_limits": 120,
+ "num_trials": 5,
+ "search_strategy": "skopt"
+}
+out_pars = {
+ "out_path": "dataset/"
+}
+#### Load Parameters and Train
+from mlmodels.models import module_load
+module = module_load( model_uri= model_uri ) # Load file definition
+model = module.Model(model_pars=model_pars, compute_pars=compute_pars) # Create Model instance
+model, sess = module.fit(model, data_pars=data_pars, model_pars=model_pars, compute_pars=compute_pars, out_pars=out_pars)
+#### Inference
+ypred = module.predict(model, data_pars, compute_pars, out_pars) # predict pipeline
+
+%package -n python3-mlmodels
+Summary: Generic model API, Model Zoo in Tensorflow, Keras, Pytorch, Hyperparamter search
+Provides: python-mlmodels
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-mlmodels
+### AutoML example in Gluon ([Example notebook](mlmodels/example/gluon_automl.ipynb))
+```python
+# import library
+import mlmodels
+import autogluon as ag
+#### Define model and data definitions
+model_uri = "model_gluon.gluon_automl.py"
+data_pars = {"train": True, "uri_type": "amazon_aws", "dt_name": "Inc"}
+model_pars = {"model_type": "tabular",
+ "learning_rate": ag.space.Real(1e-4, 1e-2, default=5e-4, log=True),
+ "activation": ag.space.Categorical(*tuple(["relu", "softrelu", "tanh"])),
+ "layers": ag.space.Categorical(
+ *tuple([[100], [1000], [200, 100], [300, 200, 100]])),
+ 'dropout_prob': ag.space.Real(0.0, 0.5, default=0.1),
+ 'num_boost_round': 10,
+ 'num_leaves': ag.space.Int(lower=26, upper=30, default=36)
+ }
+compute_pars = {
+ "hp_tune": True,
+ "num_epochs": 10,
+ "time_limits": 120,
+ "num_trials": 5,
+ "search_strategy": "skopt"
+}
+out_pars = {
+ "out_path": "dataset/"
+}
+#### Load Parameters and Train
+from mlmodels.models import module_load
+module = module_load( model_uri= model_uri ) # Load file definition
+model = module.Model(model_pars=model_pars, compute_pars=compute_pars) # Create Model instance
+model, sess = module.fit(model, data_pars=data_pars, model_pars=model_pars, compute_pars=compute_pars, out_pars=out_pars)
+#### Inference
+ypred = module.predict(model, data_pars, compute_pars, out_pars) # predict pipeline
+
+%package help
+Summary: Development documents and examples for mlmodels
+Provides: python3-mlmodels-doc
+%description help
+### AutoML example in Gluon ([Example notebook](mlmodels/example/gluon_automl.ipynb))
+```python
+# import library
+import mlmodels
+import autogluon as ag
+#### Define model and data definitions
+model_uri = "model_gluon.gluon_automl.py"
+data_pars = {"train": True, "uri_type": "amazon_aws", "dt_name": "Inc"}
+model_pars = {"model_type": "tabular",
+ "learning_rate": ag.space.Real(1e-4, 1e-2, default=5e-4, log=True),
+ "activation": ag.space.Categorical(*tuple(["relu", "softrelu", "tanh"])),
+ "layers": ag.space.Categorical(
+ *tuple([[100], [1000], [200, 100], [300, 200, 100]])),
+ 'dropout_prob': ag.space.Real(0.0, 0.5, default=0.1),
+ 'num_boost_round': 10,
+ 'num_leaves': ag.space.Int(lower=26, upper=30, default=36)
+ }
+compute_pars = {
+ "hp_tune": True,
+ "num_epochs": 10,
+ "time_limits": 120,
+ "num_trials": 5,
+ "search_strategy": "skopt"
+}
+out_pars = {
+ "out_path": "dataset/"
+}
+#### Load Parameters and Train
+from mlmodels.models import module_load
+module = module_load( model_uri= model_uri ) # Load file definition
+model = module.Model(model_pars=model_pars, compute_pars=compute_pars) # Create Model instance
+model, sess = module.fit(model, data_pars=data_pars, model_pars=model_pars, compute_pars=compute_pars, out_pars=out_pars)
+#### Inference
+ypred = module.predict(model, data_pars, compute_pars, out_pars) # predict pipeline
+
+%prep
+%autosetup -n mlmodels-0.38.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-mlmodels -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.38.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..65febd3
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+f545272393d79fa38c62f5d030d9dc85 mlmodels-0.38.1.tar.gz