summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-mlvisualizationtools.spec516
-rw-r--r--sources1
3 files changed, 518 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..4b969fb 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/MLVisualizationTools-0.6.3.tar.gz
diff --git a/python-mlvisualizationtools.spec b/python-mlvisualizationtools.spec
new file mode 100644
index 0000000..c685130
--- /dev/null
+++ b/python-mlvisualizationtools.spec
@@ -0,0 +1,516 @@
+%global _empty_manifest_terminate_build 0
+Name: python-MLVisualizationTools
+Version: 0.6.3
+Release: 1
+Summary: A set of functions and demos to make machine learning projects easier to understand through effective visualizations.
+License: MIT
+URL: https://github.com/RobertJN64/MLVisualizationTools
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e1/4a/0982ae19033c2ac80d605bc18e61645461e1d53847ae0e95c0f7d57129cd/MLVisualizationTools-0.6.3.tar.gz
+BuildArch: noarch
+
+Requires: python3-pandas
+Requires: python3-dash
+Requires: python3-flask
+Requires: python3-plotly
+Requires: python3-dash-bootstrap-components
+Requires: python3-dash-tour-component
+Requires: python3-MLVisualizationTools[dash]
+Requires: python3-jupyter-dash
+Requires: python3-MLVisualizationTools[dash]
+Requires: python3-pytest
+Requires: python3-MLVisualizationTools[dash-notebook]
+Requires: python3-pyngrok
+
+%description
+# MLVisualizationTools
+
+![Tests Badge](https://github.com/RobertJN64/MLVisualizationTools/actions/workflows/tests.yml/badge.svg)
+![Python Version Badge](https://img.shields.io/pypi/pyversions/MLVisualizationTools)
+![License Badge](https://img.shields.io/github/license/RobertJN64/MLVisualizationTools)
+
+MLVisualizationTools is a python library to make
+machine learning more understandable through the
+use of effective visualizations.
+
+![Demo Image](image.png)
+
+We support graphing with matplotlib and plotly.
+We implicity support all major ML libraries, such as
+tensorflow and sklearn.
+
+You can use the built in apps to quickly anaylyze your
+existing models, or build custom projects using the modular
+sets of functions.
+
+## Installation
+
+`pip install MLVisualizationTools`
+
+Depending on your use case, tensorflow, plotly and matplotlib might need to be
+installed.
+
+`pip install tensorflow`
+`pip install plotly`
+`pip install matplotlib`
+
+To use interactive webapps, use the `pip install MLVisualizationTools[dash]` or `pip install MLVisualizationTools[dash-notebook]`
+flags on install.
+
+If you are running on a notebook that doesn't have dash support (like kaggle), you might need
+`pip install MLVisualizationTools[ngrok-tunneling]`
+
+## Express
+
+To get started using MLVisualizationTools, run one of the prebuilt apps.
+
+```python
+import MLVisualizationTools.express.DashModelVisualizer as App
+
+model = ... #your keras model
+data = ... #your pandas dataframe with features
+
+App.visualize(model, data)
+```
+
+## Functions
+
+MLVisualizationTools connects a variety of smaller functions.
+
+Steps:
+1. Keras Model and Dataframe with features
+2. Analyzer
+3. Interface / Interface Raw (if you don't have a dataframe)
+4. Colorizers (optional)
+5. Apply Training Data Points (Optional)
+6. Colorize data points (Optional)
+7. Graphs
+
+Analyzers take a keras model and return information about the inputs
+such as which ones have high variance.
+
+Interfaces take parameters and construct a multidimensional grid
+of values based on plugging these numbers into the model.
+
+(Raw interfaces allow you to use interfaces by specifying column
+data instead of a pandas dataframe. Column data is a list with a dict with name, min,
+max, and mean values for each feature column)
+
+Colorizers mark points as being certain colors, typically above or below
+0.5.
+
+Data Interfaces render training data points on top of the
+graph to make it easier to tell if the model trained properly.
+
+Graphs turn these output grids into a visual representation.
+
+## Sample
+
+```python
+from MLVisualizationTools import Analytics, Interfaces, Graphs, Colorizers, DataInterfaces
+
+#Displays plotly graphs with max variance inputs to model
+
+model = ... #your model
+df = ... #your dataframe
+AR = Analytics.analyzeModel(model, df)
+maxvar = AR.maxVariance()
+
+grid = Interfaces.predictionGrid(model, maxvar[0], maxvar[1], df)
+grid = Colorizers.binary(grid)
+grid = DataInterfaces.addPercentageData(grid, df, str('OutputKey'))
+fig = Graphs.plotlyGraph(grid)
+fig.show()
+```
+
+## Prebuilt Examples
+
+Prebuilt examples run off of the pretrained model and dataset
+packaged with this library. They include:
+- Demo: a basic demo of library functionality that renders 2 plots
+- MatplotlibDemo: Demo but with matplotlib instead of plotly
+- DashDemo: Non-jupyter notebook version of an interactive dash
+website demo
+- DashNotebookDemo: Notebook version of an interactive website demo
+- DashKaggleDemo: Notebook version of an dash demo that works in kaggle
+notebooks
+- DataOverlayDemo: Demonstrates data overlay features
+
+See [MLVisualizationTools/Examples](/MLVisualizationTools/examples) for more examples.
+Use example.main() to run the examples and set parameters such as themes.
+
+## Support for more ML Libraries
+
+We support any ML library that has a `predict()` call that takes
+a pd Dataframe with features. If this doesn't work, use a wrapper class like
+in this example:
+
+```python
+import pandas as pd
+
+class ModelWrapper:
+ def __init(self, model):
+ self.model = model
+
+ def predict(self, dataframe: pd.DataFrame):
+ ... #Do whatever code you need here
+```
+
+## Tensorflow Compatibility
+
+MLVisualizationTools is distributed with a pretrained tensorflow model
+to make running examples quick and easy. It is not needed for main library functions.
+
+For version 2.0 through 2.4, we load a v2.0 model.
+For version 2.5+ we load a v2.5 model.
+
+If this causes compatibility issues you can still use the main library on your models.
+If you need an example model, retrain it with
+[TrainTitanicModel.py](/MLVisualizationTools/examples/TrainTitanicModel.py)
+
+
+%package -n python3-MLVisualizationTools
+Summary: A set of functions and demos to make machine learning projects easier to understand through effective visualizations.
+Provides: python-MLVisualizationTools
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-MLVisualizationTools
+# MLVisualizationTools
+
+![Tests Badge](https://github.com/RobertJN64/MLVisualizationTools/actions/workflows/tests.yml/badge.svg)
+![Python Version Badge](https://img.shields.io/pypi/pyversions/MLVisualizationTools)
+![License Badge](https://img.shields.io/github/license/RobertJN64/MLVisualizationTools)
+
+MLVisualizationTools is a python library to make
+machine learning more understandable through the
+use of effective visualizations.
+
+![Demo Image](image.png)
+
+We support graphing with matplotlib and plotly.
+We implicity support all major ML libraries, such as
+tensorflow and sklearn.
+
+You can use the built in apps to quickly anaylyze your
+existing models, or build custom projects using the modular
+sets of functions.
+
+## Installation
+
+`pip install MLVisualizationTools`
+
+Depending on your use case, tensorflow, plotly and matplotlib might need to be
+installed.
+
+`pip install tensorflow`
+`pip install plotly`
+`pip install matplotlib`
+
+To use interactive webapps, use the `pip install MLVisualizationTools[dash]` or `pip install MLVisualizationTools[dash-notebook]`
+flags on install.
+
+If you are running on a notebook that doesn't have dash support (like kaggle), you might need
+`pip install MLVisualizationTools[ngrok-tunneling]`
+
+## Express
+
+To get started using MLVisualizationTools, run one of the prebuilt apps.
+
+```python
+import MLVisualizationTools.express.DashModelVisualizer as App
+
+model = ... #your keras model
+data = ... #your pandas dataframe with features
+
+App.visualize(model, data)
+```
+
+## Functions
+
+MLVisualizationTools connects a variety of smaller functions.
+
+Steps:
+1. Keras Model and Dataframe with features
+2. Analyzer
+3. Interface / Interface Raw (if you don't have a dataframe)
+4. Colorizers (optional)
+5. Apply Training Data Points (Optional)
+6. Colorize data points (Optional)
+7. Graphs
+
+Analyzers take a keras model and return information about the inputs
+such as which ones have high variance.
+
+Interfaces take parameters and construct a multidimensional grid
+of values based on plugging these numbers into the model.
+
+(Raw interfaces allow you to use interfaces by specifying column
+data instead of a pandas dataframe. Column data is a list with a dict with name, min,
+max, and mean values for each feature column)
+
+Colorizers mark points as being certain colors, typically above or below
+0.5.
+
+Data Interfaces render training data points on top of the
+graph to make it easier to tell if the model trained properly.
+
+Graphs turn these output grids into a visual representation.
+
+## Sample
+
+```python
+from MLVisualizationTools import Analytics, Interfaces, Graphs, Colorizers, DataInterfaces
+
+#Displays plotly graphs with max variance inputs to model
+
+model = ... #your model
+df = ... #your dataframe
+AR = Analytics.analyzeModel(model, df)
+maxvar = AR.maxVariance()
+
+grid = Interfaces.predictionGrid(model, maxvar[0], maxvar[1], df)
+grid = Colorizers.binary(grid)
+grid = DataInterfaces.addPercentageData(grid, df, str('OutputKey'))
+fig = Graphs.plotlyGraph(grid)
+fig.show()
+```
+
+## Prebuilt Examples
+
+Prebuilt examples run off of the pretrained model and dataset
+packaged with this library. They include:
+- Demo: a basic demo of library functionality that renders 2 plots
+- MatplotlibDemo: Demo but with matplotlib instead of plotly
+- DashDemo: Non-jupyter notebook version of an interactive dash
+website demo
+- DashNotebookDemo: Notebook version of an interactive website demo
+- DashKaggleDemo: Notebook version of an dash demo that works in kaggle
+notebooks
+- DataOverlayDemo: Demonstrates data overlay features
+
+See [MLVisualizationTools/Examples](/MLVisualizationTools/examples) for more examples.
+Use example.main() to run the examples and set parameters such as themes.
+
+## Support for more ML Libraries
+
+We support any ML library that has a `predict()` call that takes
+a pd Dataframe with features. If this doesn't work, use a wrapper class like
+in this example:
+
+```python
+import pandas as pd
+
+class ModelWrapper:
+ def __init(self, model):
+ self.model = model
+
+ def predict(self, dataframe: pd.DataFrame):
+ ... #Do whatever code you need here
+```
+
+## Tensorflow Compatibility
+
+MLVisualizationTools is distributed with a pretrained tensorflow model
+to make running examples quick and easy. It is not needed for main library functions.
+
+For version 2.0 through 2.4, we load a v2.0 model.
+For version 2.5+ we load a v2.5 model.
+
+If this causes compatibility issues you can still use the main library on your models.
+If you need an example model, retrain it with
+[TrainTitanicModel.py](/MLVisualizationTools/examples/TrainTitanicModel.py)
+
+
+%package help
+Summary: Development documents and examples for MLVisualizationTools
+Provides: python3-MLVisualizationTools-doc
+%description help
+# MLVisualizationTools
+
+![Tests Badge](https://github.com/RobertJN64/MLVisualizationTools/actions/workflows/tests.yml/badge.svg)
+![Python Version Badge](https://img.shields.io/pypi/pyversions/MLVisualizationTools)
+![License Badge](https://img.shields.io/github/license/RobertJN64/MLVisualizationTools)
+
+MLVisualizationTools is a python library to make
+machine learning more understandable through the
+use of effective visualizations.
+
+![Demo Image](image.png)
+
+We support graphing with matplotlib and plotly.
+We implicity support all major ML libraries, such as
+tensorflow and sklearn.
+
+You can use the built in apps to quickly anaylyze your
+existing models, or build custom projects using the modular
+sets of functions.
+
+## Installation
+
+`pip install MLVisualizationTools`
+
+Depending on your use case, tensorflow, plotly and matplotlib might need to be
+installed.
+
+`pip install tensorflow`
+`pip install plotly`
+`pip install matplotlib`
+
+To use interactive webapps, use the `pip install MLVisualizationTools[dash]` or `pip install MLVisualizationTools[dash-notebook]`
+flags on install.
+
+If you are running on a notebook that doesn't have dash support (like kaggle), you might need
+`pip install MLVisualizationTools[ngrok-tunneling]`
+
+## Express
+
+To get started using MLVisualizationTools, run one of the prebuilt apps.
+
+```python
+import MLVisualizationTools.express.DashModelVisualizer as App
+
+model = ... #your keras model
+data = ... #your pandas dataframe with features
+
+App.visualize(model, data)
+```
+
+## Functions
+
+MLVisualizationTools connects a variety of smaller functions.
+
+Steps:
+1. Keras Model and Dataframe with features
+2. Analyzer
+3. Interface / Interface Raw (if you don't have a dataframe)
+4. Colorizers (optional)
+5. Apply Training Data Points (Optional)
+6. Colorize data points (Optional)
+7. Graphs
+
+Analyzers take a keras model and return information about the inputs
+such as which ones have high variance.
+
+Interfaces take parameters and construct a multidimensional grid
+of values based on plugging these numbers into the model.
+
+(Raw interfaces allow you to use interfaces by specifying column
+data instead of a pandas dataframe. Column data is a list with a dict with name, min,
+max, and mean values for each feature column)
+
+Colorizers mark points as being certain colors, typically above or below
+0.5.
+
+Data Interfaces render training data points on top of the
+graph to make it easier to tell if the model trained properly.
+
+Graphs turn these output grids into a visual representation.
+
+## Sample
+
+```python
+from MLVisualizationTools import Analytics, Interfaces, Graphs, Colorizers, DataInterfaces
+
+#Displays plotly graphs with max variance inputs to model
+
+model = ... #your model
+df = ... #your dataframe
+AR = Analytics.analyzeModel(model, df)
+maxvar = AR.maxVariance()
+
+grid = Interfaces.predictionGrid(model, maxvar[0], maxvar[1], df)
+grid = Colorizers.binary(grid)
+grid = DataInterfaces.addPercentageData(grid, df, str('OutputKey'))
+fig = Graphs.plotlyGraph(grid)
+fig.show()
+```
+
+## Prebuilt Examples
+
+Prebuilt examples run off of the pretrained model and dataset
+packaged with this library. They include:
+- Demo: a basic demo of library functionality that renders 2 plots
+- MatplotlibDemo: Demo but with matplotlib instead of plotly
+- DashDemo: Non-jupyter notebook version of an interactive dash
+website demo
+- DashNotebookDemo: Notebook version of an interactive website demo
+- DashKaggleDemo: Notebook version of an dash demo that works in kaggle
+notebooks
+- DataOverlayDemo: Demonstrates data overlay features
+
+See [MLVisualizationTools/Examples](/MLVisualizationTools/examples) for more examples.
+Use example.main() to run the examples and set parameters such as themes.
+
+## Support for more ML Libraries
+
+We support any ML library that has a `predict()` call that takes
+a pd Dataframe with features. If this doesn't work, use a wrapper class like
+in this example:
+
+```python
+import pandas as pd
+
+class ModelWrapper:
+ def __init(self, model):
+ self.model = model
+
+ def predict(self, dataframe: pd.DataFrame):
+ ... #Do whatever code you need here
+```
+
+## Tensorflow Compatibility
+
+MLVisualizationTools is distributed with a pretrained tensorflow model
+to make running examples quick and easy. It is not needed for main library functions.
+
+For version 2.0 through 2.4, we load a v2.0 model.
+For version 2.5+ we load a v2.5 model.
+
+If this causes compatibility issues you can still use the main library on your models.
+If you need an example model, retrain it with
+[TrainTitanicModel.py](/MLVisualizationTools/examples/TrainTitanicModel.py)
+
+
+%prep
+%autosetup -n MLVisualizationTools-0.6.3
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-MLVisualizationTools -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.3-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..fc437a8
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+e0ee6e6f2347c275ee9e09877555459c MLVisualizationTools-0.6.3.tar.gz