1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
%global _empty_manifest_terminate_build 0
Name: python-MLVisualizationTools
Version: 0.6.3
Release: 1
Summary: A set of functions and demos to make machine learning projects easier to understand through effective visualizations.
License: MIT
URL: https://github.com/RobertJN64/MLVisualizationTools
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/e1/4a/0982ae19033c2ac80d605bc18e61645461e1d53847ae0e95c0f7d57129cd/MLVisualizationTools-0.6.3.tar.gz
BuildArch: noarch
Requires: python3-pandas
Requires: python3-dash
Requires: python3-flask
Requires: python3-plotly
Requires: python3-dash-bootstrap-components
Requires: python3-dash-tour-component
Requires: python3-MLVisualizationTools[dash]
Requires: python3-jupyter-dash
Requires: python3-MLVisualizationTools[dash]
Requires: python3-pytest
Requires: python3-MLVisualizationTools[dash-notebook]
Requires: python3-pyngrok
%description
# MLVisualizationTools



MLVisualizationTools is a python library to make
machine learning more understandable through the
use of effective visualizations.

We support graphing with matplotlib and plotly.
We implicity support all major ML libraries, such as
tensorflow and sklearn.
You can use the built in apps to quickly anaylyze your
existing models, or build custom projects using the modular
sets of functions.
## Installation
`pip install MLVisualizationTools`
Depending on your use case, tensorflow, plotly and matplotlib might need to be
installed.
`pip install tensorflow`
`pip install plotly`
`pip install matplotlib`
To use interactive webapps, use the `pip install MLVisualizationTools[dash]` or `pip install MLVisualizationTools[dash-notebook]`
flags on install.
If you are running on a notebook that doesn't have dash support (like kaggle), you might need
`pip install MLVisualizationTools[ngrok-tunneling]`
## Express
To get started using MLVisualizationTools, run one of the prebuilt apps.
```python
import MLVisualizationTools.express.DashModelVisualizer as App
model = ... #your keras model
data = ... #your pandas dataframe with features
App.visualize(model, data)
```
## Functions
MLVisualizationTools connects a variety of smaller functions.
Steps:
1. Keras Model and Dataframe with features
2. Analyzer
3. Interface / Interface Raw (if you don't have a dataframe)
4. Colorizers (optional)
5. Apply Training Data Points (Optional)
6. Colorize data points (Optional)
7. Graphs
Analyzers take a keras model and return information about the inputs
such as which ones have high variance.
Interfaces take parameters and construct a multidimensional grid
of values based on plugging these numbers into the model.
(Raw interfaces allow you to use interfaces by specifying column
data instead of a pandas dataframe. Column data is a list with a dict with name, min,
max, and mean values for each feature column)
Colorizers mark points as being certain colors, typically above or below
0.5.
Data Interfaces render training data points on top of the
graph to make it easier to tell if the model trained properly.
Graphs turn these output grids into a visual representation.
## Sample
```python
from MLVisualizationTools import Analytics, Interfaces, Graphs, Colorizers, DataInterfaces
#Displays plotly graphs with max variance inputs to model
model = ... #your model
df = ... #your dataframe
AR = Analytics.analyzeModel(model, df)
maxvar = AR.maxVariance()
grid = Interfaces.predictionGrid(model, maxvar[0], maxvar[1], df)
grid = Colorizers.binary(grid)
grid = DataInterfaces.addPercentageData(grid, df, str('OutputKey'))
fig = Graphs.plotlyGraph(grid)
fig.show()
```
## Prebuilt Examples
Prebuilt examples run off of the pretrained model and dataset
packaged with this library. They include:
- Demo: a basic demo of library functionality that renders 2 plots
- MatplotlibDemo: Demo but with matplotlib instead of plotly
- DashDemo: Non-jupyter notebook version of an interactive dash
website demo
- DashNotebookDemo: Notebook version of an interactive website demo
- DashKaggleDemo: Notebook version of an dash demo that works in kaggle
notebooks
- DataOverlayDemo: Demonstrates data overlay features
See [MLVisualizationTools/Examples](/MLVisualizationTools/examples) for more examples.
Use example.main() to run the examples and set parameters such as themes.
## Support for more ML Libraries
We support any ML library that has a `predict()` call that takes
a pd Dataframe with features. If this doesn't work, use a wrapper class like
in this example:
```python
import pandas as pd
class ModelWrapper:
def __init(self, model):
self.model = model
def predict(self, dataframe: pd.DataFrame):
... #Do whatever code you need here
```
## Tensorflow Compatibility
MLVisualizationTools is distributed with a pretrained tensorflow model
to make running examples quick and easy. It is not needed for main library functions.
For version 2.0 through 2.4, we load a v2.0 model.
For version 2.5+ we load a v2.5 model.
If this causes compatibility issues you can still use the main library on your models.
If you need an example model, retrain it with
[TrainTitanicModel.py](/MLVisualizationTools/examples/TrainTitanicModel.py)
%package -n python3-MLVisualizationTools
Summary: A set of functions and demos to make machine learning projects easier to understand through effective visualizations.
Provides: python-MLVisualizationTools
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-MLVisualizationTools
# MLVisualizationTools



MLVisualizationTools is a python library to make
machine learning more understandable through the
use of effective visualizations.

We support graphing with matplotlib and plotly.
We implicity support all major ML libraries, such as
tensorflow and sklearn.
You can use the built in apps to quickly anaylyze your
existing models, or build custom projects using the modular
sets of functions.
## Installation
`pip install MLVisualizationTools`
Depending on your use case, tensorflow, plotly and matplotlib might need to be
installed.
`pip install tensorflow`
`pip install plotly`
`pip install matplotlib`
To use interactive webapps, use the `pip install MLVisualizationTools[dash]` or `pip install MLVisualizationTools[dash-notebook]`
flags on install.
If you are running on a notebook that doesn't have dash support (like kaggle), you might need
`pip install MLVisualizationTools[ngrok-tunneling]`
## Express
To get started using MLVisualizationTools, run one of the prebuilt apps.
```python
import MLVisualizationTools.express.DashModelVisualizer as App
model = ... #your keras model
data = ... #your pandas dataframe with features
App.visualize(model, data)
```
## Functions
MLVisualizationTools connects a variety of smaller functions.
Steps:
1. Keras Model and Dataframe with features
2. Analyzer
3. Interface / Interface Raw (if you don't have a dataframe)
4. Colorizers (optional)
5. Apply Training Data Points (Optional)
6. Colorize data points (Optional)
7. Graphs
Analyzers take a keras model and return information about the inputs
such as which ones have high variance.
Interfaces take parameters and construct a multidimensional grid
of values based on plugging these numbers into the model.
(Raw interfaces allow you to use interfaces by specifying column
data instead of a pandas dataframe. Column data is a list with a dict with name, min,
max, and mean values for each feature column)
Colorizers mark points as being certain colors, typically above or below
0.5.
Data Interfaces render training data points on top of the
graph to make it easier to tell if the model trained properly.
Graphs turn these output grids into a visual representation.
## Sample
```python
from MLVisualizationTools import Analytics, Interfaces, Graphs, Colorizers, DataInterfaces
#Displays plotly graphs with max variance inputs to model
model = ... #your model
df = ... #your dataframe
AR = Analytics.analyzeModel(model, df)
maxvar = AR.maxVariance()
grid = Interfaces.predictionGrid(model, maxvar[0], maxvar[1], df)
grid = Colorizers.binary(grid)
grid = DataInterfaces.addPercentageData(grid, df, str('OutputKey'))
fig = Graphs.plotlyGraph(grid)
fig.show()
```
## Prebuilt Examples
Prebuilt examples run off of the pretrained model and dataset
packaged with this library. They include:
- Demo: a basic demo of library functionality that renders 2 plots
- MatplotlibDemo: Demo but with matplotlib instead of plotly
- DashDemo: Non-jupyter notebook version of an interactive dash
website demo
- DashNotebookDemo: Notebook version of an interactive website demo
- DashKaggleDemo: Notebook version of an dash demo that works in kaggle
notebooks
- DataOverlayDemo: Demonstrates data overlay features
See [MLVisualizationTools/Examples](/MLVisualizationTools/examples) for more examples.
Use example.main() to run the examples and set parameters such as themes.
## Support for more ML Libraries
We support any ML library that has a `predict()` call that takes
a pd Dataframe with features. If this doesn't work, use a wrapper class like
in this example:
```python
import pandas as pd
class ModelWrapper:
def __init(self, model):
self.model = model
def predict(self, dataframe: pd.DataFrame):
... #Do whatever code you need here
```
## Tensorflow Compatibility
MLVisualizationTools is distributed with a pretrained tensorflow model
to make running examples quick and easy. It is not needed for main library functions.
For version 2.0 through 2.4, we load a v2.0 model.
For version 2.5+ we load a v2.5 model.
If this causes compatibility issues you can still use the main library on your models.
If you need an example model, retrain it with
[TrainTitanicModel.py](/MLVisualizationTools/examples/TrainTitanicModel.py)
%package help
Summary: Development documents and examples for MLVisualizationTools
Provides: python3-MLVisualizationTools-doc
%description help
# MLVisualizationTools



MLVisualizationTools is a python library to make
machine learning more understandable through the
use of effective visualizations.

We support graphing with matplotlib and plotly.
We implicity support all major ML libraries, such as
tensorflow and sklearn.
You can use the built in apps to quickly anaylyze your
existing models, or build custom projects using the modular
sets of functions.
## Installation
`pip install MLVisualizationTools`
Depending on your use case, tensorflow, plotly and matplotlib might need to be
installed.
`pip install tensorflow`
`pip install plotly`
`pip install matplotlib`
To use interactive webapps, use the `pip install MLVisualizationTools[dash]` or `pip install MLVisualizationTools[dash-notebook]`
flags on install.
If you are running on a notebook that doesn't have dash support (like kaggle), you might need
`pip install MLVisualizationTools[ngrok-tunneling]`
## Express
To get started using MLVisualizationTools, run one of the prebuilt apps.
```python
import MLVisualizationTools.express.DashModelVisualizer as App
model = ... #your keras model
data = ... #your pandas dataframe with features
App.visualize(model, data)
```
## Functions
MLVisualizationTools connects a variety of smaller functions.
Steps:
1. Keras Model and Dataframe with features
2. Analyzer
3. Interface / Interface Raw (if you don't have a dataframe)
4. Colorizers (optional)
5. Apply Training Data Points (Optional)
6. Colorize data points (Optional)
7. Graphs
Analyzers take a keras model and return information about the inputs
such as which ones have high variance.
Interfaces take parameters and construct a multidimensional grid
of values based on plugging these numbers into the model.
(Raw interfaces allow you to use interfaces by specifying column
data instead of a pandas dataframe. Column data is a list with a dict with name, min,
max, and mean values for each feature column)
Colorizers mark points as being certain colors, typically above or below
0.5.
Data Interfaces render training data points on top of the
graph to make it easier to tell if the model trained properly.
Graphs turn these output grids into a visual representation.
## Sample
```python
from MLVisualizationTools import Analytics, Interfaces, Graphs, Colorizers, DataInterfaces
#Displays plotly graphs with max variance inputs to model
model = ... #your model
df = ... #your dataframe
AR = Analytics.analyzeModel(model, df)
maxvar = AR.maxVariance()
grid = Interfaces.predictionGrid(model, maxvar[0], maxvar[1], df)
grid = Colorizers.binary(grid)
grid = DataInterfaces.addPercentageData(grid, df, str('OutputKey'))
fig = Graphs.plotlyGraph(grid)
fig.show()
```
## Prebuilt Examples
Prebuilt examples run off of the pretrained model and dataset
packaged with this library. They include:
- Demo: a basic demo of library functionality that renders 2 plots
- MatplotlibDemo: Demo but with matplotlib instead of plotly
- DashDemo: Non-jupyter notebook version of an interactive dash
website demo
- DashNotebookDemo: Notebook version of an interactive website demo
- DashKaggleDemo: Notebook version of an dash demo that works in kaggle
notebooks
- DataOverlayDemo: Demonstrates data overlay features
See [MLVisualizationTools/Examples](/MLVisualizationTools/examples) for more examples.
Use example.main() to run the examples and set parameters such as themes.
## Support for more ML Libraries
We support any ML library that has a `predict()` call that takes
a pd Dataframe with features. If this doesn't work, use a wrapper class like
in this example:
```python
import pandas as pd
class ModelWrapper:
def __init(self, model):
self.model = model
def predict(self, dataframe: pd.DataFrame):
... #Do whatever code you need here
```
## Tensorflow Compatibility
MLVisualizationTools is distributed with a pretrained tensorflow model
to make running examples quick and easy. It is not needed for main library functions.
For version 2.0 through 2.4, we load a v2.0 model.
For version 2.5+ we load a v2.5 model.
If this causes compatibility issues you can still use the main library on your models.
If you need an example model, retrain it with
[TrainTitanicModel.py](/MLVisualizationTools/examples/TrainTitanicModel.py)
%prep
%autosetup -n MLVisualizationTools-0.6.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-MLVisualizationTools -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed Apr 12 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.3-1
- Package Spec generated
|