summaryrefslogtreecommitdiff
path: root/python-model-index.spec
blob: ba26de96e61d5fc87c59407327df70f049307ab4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
%global _empty_manifest_terminate_build 0
Name:		python-model-index
Version:	0.1.11
Release:	1
Summary:	Create a source of truth for ML model results and browse it on Papers with Code
License:	MIT
URL:		https://github.com/paperswithcode/model-index
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/25/91/3db595e51266e5a32f4a26e3b4c4212ba83b4ce649196e81565cf0dcdec2/model-index-0.1.11.tar.gz
BuildArch:	noarch

Requires:	python3-pyyaml
Requires:	python3-markdown
Requires:	python3-ordered-set
Requires:	python3-click

%description
# model-index: maintain a source of truth for ML models

<p align="center">

<a href="https://app.circleci.com/pipelines/github/paperswithcode/model-index">
  <img alt="Tests" src="https://img.shields.io/circleci/build/github/paperswithcode/model-index/main">
</a>

<a href="https://pypi.org/project/model-index/">
  <img alt="PyPI" src="https://img.shields.io/pypi/v/model-index">
</a>

<a href="https://model-index.readthedocs.io/en/latest/">
  <img alt="Docs" src="https://img.shields.io/readthedocs/model-index">
</a>

</p>

`model-index` has two goals:
- Make it easy to maintain a source-of-truth index of Machine Learning model metadata 
- Enable the community browse this model metadata on [Papers with Code](https://paperswithcode.com/)

The main design principle of `model-index` is **flexibility**. You can store your model metadata however is the
most convenient for you - as JSONs, YAMLs or as annotations inside markdown. `model-index` provides a convenient
way to collect all this metadata into a single file that's browsable, searchable and comparable.

You can use this library locally or choose to upload the metadata to [Papers with Code](https://paperswithcode.com)
to have your library featured on the website. 

## How it works

There is a root file for the model index: `model-index.yml` that links to (or contains) metadata. 

```yaml
Models:
  - Name: Inception v3
    Metadata:
      FLOPs: 5731284192
      Parameters: 23834568
      Training Data: ImageNet  
      Training Resources: 8x V100 GPUs
    Results:
      - Task: Image Classification
        Dataset: ImageNet
        Metrics:
          Top 1 Accuracy: 74.67%
          Top 5 Accuracy: 92.1%
    Paper: https://arxiv.org/abs/1512.00567v3
    Code: https://github.com/rwightman/pytorch-image-models/blob/timm/models/inception_v3.py#L442
    Weights: https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth 
    README: docs/inception-v3-readme.md
```

All fields except for `Name` are **optional**. You can add any fields you like, but the ones above have a 
standard meaning across different models and libraries. 

We recommend putting the `model-index.yml` file in the root of your repository (so that relative links such as 
`docs/inception-v3-readme.md` are easier to write), but you can also put it anywhere else in the repository (e.g.
in your `docs/` or `models/` folder). 

### Storing metadata in markdown files

Metadata can also be directly stored in a model's README file. For example in this `docs/rexnet.md` file:

```markdown
<!--
Type: model-index
Name: RexNet
Metadata: 
  Epochs: 400
  Batch Size: 512
Paper: https://arxiv.org/abs/2007.00992v1
-->

# Summary

Rank Expansion Networks (ReXNets) follow a set of new design 
principles for designing bottlenecks in image classification models.

## Usage

import timm
m = timm.create_model('rexnet_100', pretrained=True)
m.eval()
```

In this case, you just need to include this markdown file into the global `model-index.yml` file:

```yaml
Models:
  - docs/rexnet.md
```

## Get started

Check out our [official documentation](https://model-index.readthedocs.io/en/latest/) on how to get started. 

## Uploading to Papers with Code

To feature your library on Papers with Code, get in touch with `hello@paperswithcode.com` and the model index
of your library will be automatically included into Papers with Code. 













%package -n python3-model-index
Summary:	Create a source of truth for ML model results and browse it on Papers with Code
Provides:	python-model-index
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-model-index
# model-index: maintain a source of truth for ML models

<p align="center">

<a href="https://app.circleci.com/pipelines/github/paperswithcode/model-index">
  <img alt="Tests" src="https://img.shields.io/circleci/build/github/paperswithcode/model-index/main">
</a>

<a href="https://pypi.org/project/model-index/">
  <img alt="PyPI" src="https://img.shields.io/pypi/v/model-index">
</a>

<a href="https://model-index.readthedocs.io/en/latest/">
  <img alt="Docs" src="https://img.shields.io/readthedocs/model-index">
</a>

</p>

`model-index` has two goals:
- Make it easy to maintain a source-of-truth index of Machine Learning model metadata 
- Enable the community browse this model metadata on [Papers with Code](https://paperswithcode.com/)

The main design principle of `model-index` is **flexibility**. You can store your model metadata however is the
most convenient for you - as JSONs, YAMLs or as annotations inside markdown. `model-index` provides a convenient
way to collect all this metadata into a single file that's browsable, searchable and comparable.

You can use this library locally or choose to upload the metadata to [Papers with Code](https://paperswithcode.com)
to have your library featured on the website. 

## How it works

There is a root file for the model index: `model-index.yml` that links to (or contains) metadata. 

```yaml
Models:
  - Name: Inception v3
    Metadata:
      FLOPs: 5731284192
      Parameters: 23834568
      Training Data: ImageNet  
      Training Resources: 8x V100 GPUs
    Results:
      - Task: Image Classification
        Dataset: ImageNet
        Metrics:
          Top 1 Accuracy: 74.67%
          Top 5 Accuracy: 92.1%
    Paper: https://arxiv.org/abs/1512.00567v3
    Code: https://github.com/rwightman/pytorch-image-models/blob/timm/models/inception_v3.py#L442
    Weights: https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth 
    README: docs/inception-v3-readme.md
```

All fields except for `Name` are **optional**. You can add any fields you like, but the ones above have a 
standard meaning across different models and libraries. 

We recommend putting the `model-index.yml` file in the root of your repository (so that relative links such as 
`docs/inception-v3-readme.md` are easier to write), but you can also put it anywhere else in the repository (e.g.
in your `docs/` or `models/` folder). 

### Storing metadata in markdown files

Metadata can also be directly stored in a model's README file. For example in this `docs/rexnet.md` file:

```markdown
<!--
Type: model-index
Name: RexNet
Metadata: 
  Epochs: 400
  Batch Size: 512
Paper: https://arxiv.org/abs/2007.00992v1
-->

# Summary

Rank Expansion Networks (ReXNets) follow a set of new design 
principles for designing bottlenecks in image classification models.

## Usage

import timm
m = timm.create_model('rexnet_100', pretrained=True)
m.eval()
```

In this case, you just need to include this markdown file into the global `model-index.yml` file:

```yaml
Models:
  - docs/rexnet.md
```

## Get started

Check out our [official documentation](https://model-index.readthedocs.io/en/latest/) on how to get started. 

## Uploading to Papers with Code

To feature your library on Papers with Code, get in touch with `hello@paperswithcode.com` and the model index
of your library will be automatically included into Papers with Code. 













%package help
Summary:	Development documents and examples for model-index
Provides:	python3-model-index-doc
%description help
# model-index: maintain a source of truth for ML models

<p align="center">

<a href="https://app.circleci.com/pipelines/github/paperswithcode/model-index">
  <img alt="Tests" src="https://img.shields.io/circleci/build/github/paperswithcode/model-index/main">
</a>

<a href="https://pypi.org/project/model-index/">
  <img alt="PyPI" src="https://img.shields.io/pypi/v/model-index">
</a>

<a href="https://model-index.readthedocs.io/en/latest/">
  <img alt="Docs" src="https://img.shields.io/readthedocs/model-index">
</a>

</p>

`model-index` has two goals:
- Make it easy to maintain a source-of-truth index of Machine Learning model metadata 
- Enable the community browse this model metadata on [Papers with Code](https://paperswithcode.com/)

The main design principle of `model-index` is **flexibility**. You can store your model metadata however is the
most convenient for you - as JSONs, YAMLs or as annotations inside markdown. `model-index` provides a convenient
way to collect all this metadata into a single file that's browsable, searchable and comparable.

You can use this library locally or choose to upload the metadata to [Papers with Code](https://paperswithcode.com)
to have your library featured on the website. 

## How it works

There is a root file for the model index: `model-index.yml` that links to (or contains) metadata. 

```yaml
Models:
  - Name: Inception v3
    Metadata:
      FLOPs: 5731284192
      Parameters: 23834568
      Training Data: ImageNet  
      Training Resources: 8x V100 GPUs
    Results:
      - Task: Image Classification
        Dataset: ImageNet
        Metrics:
          Top 1 Accuracy: 74.67%
          Top 5 Accuracy: 92.1%
    Paper: https://arxiv.org/abs/1512.00567v3
    Code: https://github.com/rwightman/pytorch-image-models/blob/timm/models/inception_v3.py#L442
    Weights: https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth 
    README: docs/inception-v3-readme.md
```

All fields except for `Name` are **optional**. You can add any fields you like, but the ones above have a 
standard meaning across different models and libraries. 

We recommend putting the `model-index.yml` file in the root of your repository (so that relative links such as 
`docs/inception-v3-readme.md` are easier to write), but you can also put it anywhere else in the repository (e.g.
in your `docs/` or `models/` folder). 

### Storing metadata in markdown files

Metadata can also be directly stored in a model's README file. For example in this `docs/rexnet.md` file:

```markdown
<!--
Type: model-index
Name: RexNet
Metadata: 
  Epochs: 400
  Batch Size: 512
Paper: https://arxiv.org/abs/2007.00992v1
-->

# Summary

Rank Expansion Networks (ReXNets) follow a set of new design 
principles for designing bottlenecks in image classification models.

## Usage

import timm
m = timm.create_model('rexnet_100', pretrained=True)
m.eval()
```

In this case, you just need to include this markdown file into the global `model-index.yml` file:

```yaml
Models:
  - docs/rexnet.md
```

## Get started

Check out our [official documentation](https://model-index.readthedocs.io/en/latest/) on how to get started. 

## Uploading to Papers with Code

To feature your library on Papers with Code, get in touch with `hello@paperswithcode.com` and the model index
of your library will be automatically included into Papers with Code. 













%prep
%autosetup -n model-index-0.1.11

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-model-index -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.11-1
- Package Spec generated