summaryrefslogtreecommitdiff
path: root/python-momba.spec
blob: a233ce62502f376567aa5be9a1c1119149e8a846 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
%global _empty_manifest_terminate_build 0
Name:		python-momba
Version:	0.6.8
Release:	1
Summary:	A Python library for quantitative models.
License:	MIT OR Apache-2.0
URL:		https://momba.dev/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/ba/82/d364b6a75bfccd4dd887679de20903b18216f6209340cf9cde21667df164/momba-0.6.8.tar.gz
BuildArch:	noarch

Requires:	python3-click
Requires:	python3-docker
Requires:	python3-gymnasium
Requires:	python3-immutables
Requires:	python3-momba_engine
Requires:	python3-mxu
Requires:	python3-torch

%description
<p align="center">
  <img src="https://raw.githubusercontent.com/koehlma/momba/master/docs/_static/images/logo_with_text.svg" alt="Momba Logo" width="200px">
</p>

<p align="center">
  <a href="https://pypi.python.org/pypi/momba"><img alt="PyPi Package" src="https://img.shields.io/pypi/v/momba.svg?label=latest%20version"></a>
  <a href="https://github.com/koehlma/momba/actions"><img alt="Tests" src="https://img.shields.io/github/workflow/status/koehlma/momba/Pipeline?label=tests"></a>
  <a href="https://koehlma.github.io/momba/"><img alt="Docs" src="https://img.shields.io/static/v1?label=docs&message=master&color=blue"></a>
  <a href="https://github.com/psf/black"><img alt="Code Style: Black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
  <a href="https://gitter.im/koehlma/momba?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge"><img alt="Gitter" src="https://badges.gitter.im/koehlma/momba.svg"></a>
  <a href="https://doi.org/10.5281/zenodo.4519376"><img alt="DOI" src="https://zenodo.org/badge/DOI/10.5281/zenodo.4519376.svg"></a>
</p>

_Momba_ is a Python framework for dealing with quantitative models centered around the [JANI-model](http://www.jani-spec.org/) interchange format.
Momba strives to deliver an integrated and intuitive experience to aid the process of model construction, validation, and analysis.
It provides convenience functions for the modular construction of models effectively turning Python into a syntax-aware macro language for quantitative models.
Momba's built-in exploration engine allows gaining confidence in a model, for instance, by rapidly prototyping a tool for interactive model exploration and visualization, or by connecting it to a testing framework.
Finally, thanks to the JANI-model interchange format, several state-of-the-art model checkers and other tools are readily available for model analysis.

For academic publications, please cite Momba as follows:

Maximilian A. KΓΆhl, Michaela Klauck, and Holger Hermanns: _Momba: JANI Meets Python_. In: J. F. Groote and K. G. Larsen (eds.) 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021. DOI: https://doi.org/10.1007/978-3-030-72013-1_23.

In case you made anything with Momba or plan to do so, we would highly appreciate if you let us know about your exciting project by [opening a discussion](https://github.com/koehlma/momba/discussions/new?category=show-and-tell) or dropping us a message. πŸ™Œ

## ✨ Features

- first-class **import and export** of **JANI models**
- **syntax-aware macros** for the modular construction of models with Python code
- **built-in exploration engine** for PTAs, MDPs and other model types
- interfaces to state-of-the-art model checkers, e.g., the [Modest Toolset](http://www.modestchecker.net/) and [Storm](https://www.stormchecker.org/)
- **an [OpenAI Gym](https://gym.openai.com) compatible interface** for training agents on formal models
- pythonic and **statically typed** APIs to tinker with formal models
- hassle-free out-of-the-box support for **Windows, Linux, and MacOS**

## πŸš€ Getting Started

Momba is available from the [Python Package Index](https://pypi.org/):

```sh
pip install momba[all]
```

Installing Momba with the `all` feature flag will install all optional dependencies unleashing the full power and all features of Momba.
Check out the [examples](https://koehlma.github.io/momba/examples) or read the [user guide](https://koehlma.github.io/momba/guide) to learn more.

If you aim at a fully reproducible modeling environment, we recommend using [Pipenv](https://pypi.org/project/pipenv/) or [Poetry](https://python-poetry.org/) for dependency management.
We also provide a [GitHub Template](https://github.com/koehlma/momba-pipenv-template) for Pipenv.

## πŸ— Contributing

We welcome all kinds of contributions!

For minor changes and bug fixes feel free to simply open a pull request. For major changes impacting the overall design of Momba, please first [start a discussion](https://github.com/koehlma/momba/discussions/new?category=ideas) outlining your idea.

To get you started, we provide a [development container for VS Code](https://code.visualstudio.com/docs/remote/containers) containing everything you need for development. The easiest way to get up and running is by clicking on the following badge:

[![VS Code: Open in Container](https://img.shields.io/static/v1?label=VS%20Code&message=Open%20in%20Container&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/koehlma/momba.git)

Opening the link in VS Code will clone this repository into its own Docker volume and then start the provided development container inside VS Code so you are ready to start coding.

## βš–οΈ Licensing

Momba is licensed under either [MIT](https://github.com/koehlma/momba/blob/main/LICENSE-MIT) or [Apache 2.0](https://github.com/koehlma/momba/blob/main/LICENSE-APACHE) at your opinion.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache 2.0 license, shall be dual licensed as above, without any additional terms or conditions.

## πŸ¦€ Rust Crates

The exploration engine of Momba is written in [Rust](https://rust-lang.org) levering [PyO3](https://pyo3.rs/) for Python bindings.
In case you are a Rust developer you might find some of the crates in [engine/crates](engine/crates) useful.
In particular, the crate [momba-explore](https://crates.io/crates/momba-explore) allows developing model analysis tools with JANI support in Rust based on Momba's explicit state space exploration engine.
The Rust command line tool [`momba-sidekick`](https://crates.io/crates/momba-sidekick) directly exposes some of this functionality.

## πŸ™ Acknowledgements

This project is partially supported by the German Research Foundation (DFG) under grant No. 389792660, as part of [TRR 248](https://perspicuous-computing.science).

Thanks to Sarah Sterz for the awesome Momba logo.



%package -n python3-momba
Summary:	A Python library for quantitative models.
Provides:	python-momba
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-momba
<p align="center">
  <img src="https://raw.githubusercontent.com/koehlma/momba/master/docs/_static/images/logo_with_text.svg" alt="Momba Logo" width="200px">
</p>

<p align="center">
  <a href="https://pypi.python.org/pypi/momba"><img alt="PyPi Package" src="https://img.shields.io/pypi/v/momba.svg?label=latest%20version"></a>
  <a href="https://github.com/koehlma/momba/actions"><img alt="Tests" src="https://img.shields.io/github/workflow/status/koehlma/momba/Pipeline?label=tests"></a>
  <a href="https://koehlma.github.io/momba/"><img alt="Docs" src="https://img.shields.io/static/v1?label=docs&message=master&color=blue"></a>
  <a href="https://github.com/psf/black"><img alt="Code Style: Black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
  <a href="https://gitter.im/koehlma/momba?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge"><img alt="Gitter" src="https://badges.gitter.im/koehlma/momba.svg"></a>
  <a href="https://doi.org/10.5281/zenodo.4519376"><img alt="DOI" src="https://zenodo.org/badge/DOI/10.5281/zenodo.4519376.svg"></a>
</p>

_Momba_ is a Python framework for dealing with quantitative models centered around the [JANI-model](http://www.jani-spec.org/) interchange format.
Momba strives to deliver an integrated and intuitive experience to aid the process of model construction, validation, and analysis.
It provides convenience functions for the modular construction of models effectively turning Python into a syntax-aware macro language for quantitative models.
Momba's built-in exploration engine allows gaining confidence in a model, for instance, by rapidly prototyping a tool for interactive model exploration and visualization, or by connecting it to a testing framework.
Finally, thanks to the JANI-model interchange format, several state-of-the-art model checkers and other tools are readily available for model analysis.

For academic publications, please cite Momba as follows:

Maximilian A. KΓΆhl, Michaela Klauck, and Holger Hermanns: _Momba: JANI Meets Python_. In: J. F. Groote and K. G. Larsen (eds.) 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021. DOI: https://doi.org/10.1007/978-3-030-72013-1_23.

In case you made anything with Momba or plan to do so, we would highly appreciate if you let us know about your exciting project by [opening a discussion](https://github.com/koehlma/momba/discussions/new?category=show-and-tell) or dropping us a message. πŸ™Œ

## ✨ Features

- first-class **import and export** of **JANI models**
- **syntax-aware macros** for the modular construction of models with Python code
- **built-in exploration engine** for PTAs, MDPs and other model types
- interfaces to state-of-the-art model checkers, e.g., the [Modest Toolset](http://www.modestchecker.net/) and [Storm](https://www.stormchecker.org/)
- **an [OpenAI Gym](https://gym.openai.com) compatible interface** for training agents on formal models
- pythonic and **statically typed** APIs to tinker with formal models
- hassle-free out-of-the-box support for **Windows, Linux, and MacOS**

## πŸš€ Getting Started

Momba is available from the [Python Package Index](https://pypi.org/):

```sh
pip install momba[all]
```

Installing Momba with the `all` feature flag will install all optional dependencies unleashing the full power and all features of Momba.
Check out the [examples](https://koehlma.github.io/momba/examples) or read the [user guide](https://koehlma.github.io/momba/guide) to learn more.

If you aim at a fully reproducible modeling environment, we recommend using [Pipenv](https://pypi.org/project/pipenv/) or [Poetry](https://python-poetry.org/) for dependency management.
We also provide a [GitHub Template](https://github.com/koehlma/momba-pipenv-template) for Pipenv.

## πŸ— Contributing

We welcome all kinds of contributions!

For minor changes and bug fixes feel free to simply open a pull request. For major changes impacting the overall design of Momba, please first [start a discussion](https://github.com/koehlma/momba/discussions/new?category=ideas) outlining your idea.

To get you started, we provide a [development container for VS Code](https://code.visualstudio.com/docs/remote/containers) containing everything you need for development. The easiest way to get up and running is by clicking on the following badge:

[![VS Code: Open in Container](https://img.shields.io/static/v1?label=VS%20Code&message=Open%20in%20Container&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/koehlma/momba.git)

Opening the link in VS Code will clone this repository into its own Docker volume and then start the provided development container inside VS Code so you are ready to start coding.

## βš–οΈ Licensing

Momba is licensed under either [MIT](https://github.com/koehlma/momba/blob/main/LICENSE-MIT) or [Apache 2.0](https://github.com/koehlma/momba/blob/main/LICENSE-APACHE) at your opinion.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache 2.0 license, shall be dual licensed as above, without any additional terms or conditions.

## πŸ¦€ Rust Crates

The exploration engine of Momba is written in [Rust](https://rust-lang.org) levering [PyO3](https://pyo3.rs/) for Python bindings.
In case you are a Rust developer you might find some of the crates in [engine/crates](engine/crates) useful.
In particular, the crate [momba-explore](https://crates.io/crates/momba-explore) allows developing model analysis tools with JANI support in Rust based on Momba's explicit state space exploration engine.
The Rust command line tool [`momba-sidekick`](https://crates.io/crates/momba-sidekick) directly exposes some of this functionality.

## πŸ™ Acknowledgements

This project is partially supported by the German Research Foundation (DFG) under grant No. 389792660, as part of [TRR 248](https://perspicuous-computing.science).

Thanks to Sarah Sterz for the awesome Momba logo.



%package help
Summary:	Development documents and examples for momba
Provides:	python3-momba-doc
%description help
<p align="center">
  <img src="https://raw.githubusercontent.com/koehlma/momba/master/docs/_static/images/logo_with_text.svg" alt="Momba Logo" width="200px">
</p>

<p align="center">
  <a href="https://pypi.python.org/pypi/momba"><img alt="PyPi Package" src="https://img.shields.io/pypi/v/momba.svg?label=latest%20version"></a>
  <a href="https://github.com/koehlma/momba/actions"><img alt="Tests" src="https://img.shields.io/github/workflow/status/koehlma/momba/Pipeline?label=tests"></a>
  <a href="https://koehlma.github.io/momba/"><img alt="Docs" src="https://img.shields.io/static/v1?label=docs&message=master&color=blue"></a>
  <a href="https://github.com/psf/black"><img alt="Code Style: Black" src="https://img.shields.io/badge/code%20style-black-000000.svg"></a>
  <a href="https://gitter.im/koehlma/momba?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge"><img alt="Gitter" src="https://badges.gitter.im/koehlma/momba.svg"></a>
  <a href="https://doi.org/10.5281/zenodo.4519376"><img alt="DOI" src="https://zenodo.org/badge/DOI/10.5281/zenodo.4519376.svg"></a>
</p>

_Momba_ is a Python framework for dealing with quantitative models centered around the [JANI-model](http://www.jani-spec.org/) interchange format.
Momba strives to deliver an integrated and intuitive experience to aid the process of model construction, validation, and analysis.
It provides convenience functions for the modular construction of models effectively turning Python into a syntax-aware macro language for quantitative models.
Momba's built-in exploration engine allows gaining confidence in a model, for instance, by rapidly prototyping a tool for interactive model exploration and visualization, or by connecting it to a testing framework.
Finally, thanks to the JANI-model interchange format, several state-of-the-art model checkers and other tools are readily available for model analysis.

For academic publications, please cite Momba as follows:

Maximilian A. KΓΆhl, Michaela Klauck, and Holger Hermanns: _Momba: JANI Meets Python_. In: J. F. Groote and K. G. Larsen (eds.) 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021. DOI: https://doi.org/10.1007/978-3-030-72013-1_23.

In case you made anything with Momba or plan to do so, we would highly appreciate if you let us know about your exciting project by [opening a discussion](https://github.com/koehlma/momba/discussions/new?category=show-and-tell) or dropping us a message. πŸ™Œ

## ✨ Features

- first-class **import and export** of **JANI models**
- **syntax-aware macros** for the modular construction of models with Python code
- **built-in exploration engine** for PTAs, MDPs and other model types
- interfaces to state-of-the-art model checkers, e.g., the [Modest Toolset](http://www.modestchecker.net/) and [Storm](https://www.stormchecker.org/)
- **an [OpenAI Gym](https://gym.openai.com) compatible interface** for training agents on formal models
- pythonic and **statically typed** APIs to tinker with formal models
- hassle-free out-of-the-box support for **Windows, Linux, and MacOS**

## πŸš€ Getting Started

Momba is available from the [Python Package Index](https://pypi.org/):

```sh
pip install momba[all]
```

Installing Momba with the `all` feature flag will install all optional dependencies unleashing the full power and all features of Momba.
Check out the [examples](https://koehlma.github.io/momba/examples) or read the [user guide](https://koehlma.github.io/momba/guide) to learn more.

If you aim at a fully reproducible modeling environment, we recommend using [Pipenv](https://pypi.org/project/pipenv/) or [Poetry](https://python-poetry.org/) for dependency management.
We also provide a [GitHub Template](https://github.com/koehlma/momba-pipenv-template) for Pipenv.

## πŸ— Contributing

We welcome all kinds of contributions!

For minor changes and bug fixes feel free to simply open a pull request. For major changes impacting the overall design of Momba, please first [start a discussion](https://github.com/koehlma/momba/discussions/new?category=ideas) outlining your idea.

To get you started, we provide a [development container for VS Code](https://code.visualstudio.com/docs/remote/containers) containing everything you need for development. The easiest way to get up and running is by clicking on the following badge:

[![VS Code: Open in Container](https://img.shields.io/static/v1?label=VS%20Code&message=Open%20in%20Container&color=blue&logo=visualstudiocode)](https://vscode.dev/redirect?url=vscode://ms-vscode-remote.remote-containers/cloneInVolume?url=https://github.com/koehlma/momba.git)

Opening the link in VS Code will clone this repository into its own Docker volume and then start the provided development container inside VS Code so you are ready to start coding.

## βš–οΈ Licensing

Momba is licensed under either [MIT](https://github.com/koehlma/momba/blob/main/LICENSE-MIT) or [Apache 2.0](https://github.com/koehlma/momba/blob/main/LICENSE-APACHE) at your opinion.

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in this project by you, as defined in the Apache 2.0 license, shall be dual licensed as above, without any additional terms or conditions.

## πŸ¦€ Rust Crates

The exploration engine of Momba is written in [Rust](https://rust-lang.org) levering [PyO3](https://pyo3.rs/) for Python bindings.
In case you are a Rust developer you might find some of the crates in [engine/crates](engine/crates) useful.
In particular, the crate [momba-explore](https://crates.io/crates/momba-explore) allows developing model analysis tools with JANI support in Rust based on Momba's explicit state space exploration engine.
The Rust command line tool [`momba-sidekick`](https://crates.io/crates/momba-sidekick) directly exposes some of this functionality.

## πŸ™ Acknowledgements

This project is partially supported by the German Research Foundation (DFG) under grant No. 389792660, as part of [TRR 248](https://perspicuous-computing.science).

Thanks to Sarah Sterz for the awesome Momba logo.



%prep
%autosetup -n momba-0.6.8

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-momba -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.8-1
- Package Spec generated