1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
|
%global _empty_manifest_terminate_build 0
Name: python-msticpy
Version: 2.4.0
Release: 1
Summary: MSTIC Security Tools
License: MIT License
URL: https://github.com/microsoft/msticpy
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a7/4a/9fcd9bfc0bd754b84043a15e343f1fffd4d8c4580458bc79394a21104f60/msticpy-2.4.0.tar.gz
BuildArch: noarch
Requires: python3-attrs
Requires: python3-azure-common
Requires: python3-azure-core
Requires: python3-azure-identity
Requires: python3-azure-mgmt-subscription
Requires: python3-beautifulsoup4
Requires: python3-bokeh
Requires: python3-cryptography
Requires: python3-deprecated
Requires: python3-dnspython
Requires: python3-folium
Requires: python3-geoip2
Requires: python3-httpx
Requires: python3-html5lib
Requires: python3-ipywidgets
Requires: python3-KqlmagicCustom[auth_code_clipboard,jupyter-basic]
Requires: python3-lxml
Requires: python3-matplotlib
Requires: python3-msal
Requires: python3-msal-extensions
Requires: python3-msrest
Requires: python3-msrestazure
Requires: python3-nest-asyncio
Requires: python3-networkx
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-pygments
Requires: python3-pyjwt
Requires: python3-dateutil
Requires: python3-pytz
Requires: python3-pyyaml
Requires: python3-setuptools
Requires: python3-tldextract
Requires: python3-tqdm
Requires: python3-typing-extensions
Requires: python3-urllib3
Requires: python3-ipython
Requires: python3-ipython
Requires: python3-azure-mgmt-compute
Requires: python3-azure-mgmt-core
Requires: python3-azure-mgmt-monitor
Requires: python3-azure-mgmt-network
Requires: python3-azure-mgmt-resource
Requires: python3-azure-storage-blob
Requires: python3-azure-mgmt-resourcegraph
Requires: python3-KqlmagicCustom[jupyter-extended]
Requires: python3-azure-keyvault-secrets
Requires: python3-azure-mgmt-compute
Requires: python3-azure-mgmt-core
Requires: python3-azure-mgmt-keyvault
Requires: python3-azure-mgmt-monitor
Requires: python3-azure-mgmt-network
Requires: python3-azure-mgmt-resource
Requires: python3-azure-mgmt-resourcegraph
Requires: python3-azure-storage-blob
Requires: python3-keyring
Requires: python3-mo-sql-parsing
Requires: python3-nest-asyncio
Requires: python3-openpyxl
Requires: python3-passivetotal
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-splunk-sdk
Requires: python3-statsmodels
Requires: python3-sumologic-sdk
Requires: python3-vt-graph-api
Requires: python3-vt-py
Requires: python3-KqlmagicCustom[jupyter-extended]
Requires: python3-azure-keyvault-secrets
Requires: python3-azure-mgmt-compute
Requires: python3-azure-mgmt-core
Requires: python3-azure-mgmt-keyvault
Requires: python3-azure-mgmt-monitor
Requires: python3-azure-mgmt-network
Requires: python3-azure-mgmt-resource
Requires: python3-azure-mgmt-resourcegraph
Requires: python3-azure-storage-blob
Requires: python3-keyring
Requires: python3-azure-keyvault-secrets
Requires: python3-azure-mgmt-compute
Requires: python3-azure-mgmt-core
Requires: python3-azure-mgmt-keyvault
Requires: python3-azure-mgmt-monitor
Requires: python3-azure-mgmt-network
Requires: python3-azure-mgmt-resource
Requires: python3-azure-mgmt-resourcegraph
Requires: python3-azure-storage-blob
Requires: python3-keyring
Requires: python3-KqlmagicCustom[jupyter-extended]
Requires: python3-azure-keyvault-secrets
Requires: python3-azure-mgmt-compute
Requires: python3-azure-mgmt-core
Requires: python3-azure-mgmt-keyvault
Requires: python3-azure-mgmt-monitor
Requires: python3-azure-mgmt-network
Requires: python3-azure-mgmt-resource
Requires: python3-azure-mgmt-resourcegraph
Requires: python3-azure-storage-blob
Requires: python3-keyring
Requires: python3-aiohttp
Requires: python3-async-cache
Requires: python3-bandit
Requires: python3-beautifulsoup4
Requires: python3-black
Requires: python3-coverage
Requires: python3-docutils
Requires: python3-filelock
Requires: python3-flake8
Requires: python3-isort
Requires: python3-markdown
Requires: python3-mccabe
Requires: python3-mypy
Requires: python3-nbdime
Requires: python3-nbconvert
Requires: python3-pandas
Requires: python3-pep8-naming
Requires: python3-pep8
Requires: python3-pipreqs
Requires: python3-pre-commit
Requires: python3-pycodestyle
Requires: python3-pydocstyle
Requires: python3-pyflakes
Requires: python3-pygeohash
Requires: python3-pylint
Requires: python3-pyroma
Requires: python3-pytest-check
Requires: python3-pytest-cov
Requires: python3-pytest-xdist
Requires: python3-pytest
Requires: python3-readthedocs-sphinx-ext
Requires: python3-responses
Requires: python3-respx
Requires: python3-sphinx-rtd-theme
Requires: python3-sphinx
Requires: python3-types-attrs
Requires: python3-azure-keyvault-secrets
Requires: python3-azure-mgmt-keyvault
Requires: python3-keyring
Requires: python3-KqlmagicCustom[jupyter-extended]
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-statsmodels
Requires: python3-passivetotal
Requires: python3-KqlmagicCustom[jupyter-extended]
Requires: python3-azure-keyvault-secrets
Requires: python3-azure-mgmt-compute
Requires: python3-azure-mgmt-core
Requires: python3-azure-mgmt-keyvault
Requires: python3-azure-mgmt-monitor
Requires: python3-azure-mgmt-network
Requires: python3-azure-mgmt-resource
Requires: python3-azure-mgmt-resourcegraph
Requires: python3-azure-storage-blob
Requires: python3-keyring
Requires: python3-splunk-sdk
Requires: python3-mo-sql-parsing
Requires: python3-sumologic-sdk
Requires: python3-openpyxl
Requires: python3-KqlmagicCustom[jupyter-extended]
Requires: python3-aiohttp
Requires: python3-async-cache
Requires: python3-azure-keyvault-secrets
Requires: python3-azure-mgmt-compute
Requires: python3-azure-mgmt-core
Requires: python3-azure-mgmt-keyvault
Requires: python3-azure-mgmt-monitor
Requires: python3-azure-mgmt-network
Requires: python3-azure-mgmt-resource
Requires: python3-azure-mgmt-resourcegraph
Requires: python3-azure-storage-blob
Requires: python3-bandit
Requires: python3-beautifulsoup4
Requires: python3-black
Requires: python3-coverage
Requires: python3-docutils
Requires: python3-filelock
Requires: python3-flake8
Requires: python3-isort
Requires: python3-keyring
Requires: python3-markdown
Requires: python3-mccabe
Requires: python3-mo-sql-parsing
Requires: python3-mypy
Requires: python3-nbconvert
Requires: python3-nbdime
Requires: python3-nest-asyncio
Requires: python3-openpyxl
Requires: python3-pandas
Requires: python3-passivetotal
Requires: python3-pep8-naming
Requires: python3-pep8
Requires: python3-pipreqs
Requires: python3-pre-commit
Requires: python3-pycodestyle
Requires: python3-pydocstyle
Requires: python3-pyflakes
Requires: python3-pygeohash
Requires: python3-pylint
Requires: python3-pyroma
Requires: python3-pytest-check
Requires: python3-pytest-cov
Requires: python3-pytest-xdist
Requires: python3-pytest
Requires: python3-readthedocs-sphinx-ext
Requires: python3-responses
Requires: python3-respx
Requires: python3-scikit-learn
Requires: python3-scipy
Requires: python3-sphinx-rtd-theme
Requires: python3-sphinx
Requires: python3-splunk-sdk
Requires: python3-statsmodels
Requires: python3-sumologic-sdk
Requires: python3-types-attrs
Requires: python3-vt-graph-api
Requires: python3-vt-py
Requires: python3-vt-py
Requires: python3-vt-graph-api
Requires: python3-nest-asyncio
%description
## Log Data Acquisition
QueryProvider is an extensible query library targeting Azure Sentinel/Log Analytics,
Splunk, OData
and other log data sources. It also has special support for
[Mordor](https://github.com/OTRF/mordor) data sets and using local data.
Built-in parameterized queries allow complex queries to be run
from a single function call. Add your own queries using a simple YAML
schema.
[Data Queries Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/Data_Queries.ipynb)
## Data Enrichment
### Threat Intelligence providers
The TILookup class can lookup IoCs across multiple TI providers. built-in
providers include AlienVault OTX, IBM XForce, VirusTotal and Azure Sentinel.
The input can be a single IoC observable or a pandas DataFrame containing
multiple observables. Depending on the provider, you may require an account
and an API key. Some providers also enforce throttling (especially for free
tiers), which might affect performing bulk lookups.
[TIProviders](https://msticpy.readthedocs.io/en/latest/data_acquisition/TIProviders.html)
and
[TILookup Usage Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/TIProviders.ipynb)
### GeoLocation Data
The GeoIP lookup classes allow you to match the geo-locations of IP addresses
using either:
- GeoLiteLookup - Maxmind Geolite (see <https://www.maxmind.com>)
- IPStackLookup - IPStack (see <https://ipstack.com>)
<img src="./docs/source/visualization/_static/folium_sf_zoom.png"
alt="Folium map"
title="Plotting Geo IP Location" height="200" />
[GeoIP Lookup](https://msticpy.readthedocs.io/en/latest/data_acquisition/GeoIPLookups.html)
and
[GeoIP Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/GeoIPLookups.ipynb)
### Azure Resource Data, Storage and Azure Sentinel API
The AzureData module contains functionality for enriching data regarding Azure host
details with additional host details exposed via the Azure API. The AzureSentinel
module allows you to query incidents, retrieve detector and hunting
queries. AzureBlogStorage lets you read and write data from blob storage.
[Azure Resource APIs](https://msticpy.readthedocs.io/en/latest/data_acquisition/AzureData.html),
[Azure Sentinel APIs](https://msticpy.readthedocs.io/en/latest/data_acquisition/Sentinel.html),
[Azure Storage](https://msticpy.readthedocs.io/en/latest/data_acquisition/AzureBlobStorage.html)
## Security Analysis
This subpackage contains several modules helpful for working on security investigations and hunting:
### Anomalous Sequence Detection
Detect unusual sequences of events in your Office, Active Directory or other log data.
You can extract sessions (e.g. activity initiated by the same account) and identify and
visualize unusual sequences of activity. For example, detecting an attacker setting
a mail forwarding rule on someone's mailbox.
[Anomalous Sessions](https://msticpy.readthedocs.io/en/latest/data_analysis/AnomalousSequence.html)
and
[Anomalous Sequence Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/AnomalousSequence.ipynb)
### Time Series Analysis
Time series analysis allows you to identify unusual patterns in your log data
taking into account normal seasonal variations (e.g. the regular ebb and flow of
events over hours of the day, days of the week, etc.). Using both analysis and
visualization highlights unusual traffic flows or event activity for any data
set.
<img src="./docs/source/visualization/_static/TimeSeriesAnomalieswithRangeTool.png"
alt="Time Series anomalies" title="Time Series anomalies" height="300" />
[Time Series](https://msticpy.readthedocs.io/en/latest/visualization/TimeSeriesAnomalies.html)
## Visualization
### Event Timelines
Display any log events on an interactive timeline. Using the
[Bokeh Visualization Library](https://bokeh.org/) the timeline control enables
you to visualize one or more event streams, interactively zoom into specific time
slots and view event details for plotted events.
<img src="./docs/source/visualization/_static/TimeLine-01.png"
alt="Timeline" title="Msticpy Timeline Control" height="300" />
[Timeline](https://msticpy.readthedocs.io/en/latest/visualization/EventTimeline.html)
and
[Timeline Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/EventTimeline.ipynb)
### Process Trees
The process tree functionality has two main components:
- Process Tree creation - taking a process creation log from a host and building
the parent-child relationships between processes in the data set.
- Process Tree visualization - this takes the processed output displays an interactive process tree using Bokeh plots.
There are a set of utility functions to extract individual and partial trees from the processed data set.
<img src="./docs/source/visualization/_static/process_tree3.png"
alt="Process Tree"
title="Interactive Process Tree" height="400" />
[Process Tree](https://msticpy.readthedocs.io/en/latest/visualization/ProcessTree.html)
and
[Process Tree Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/ProcessTree.ipynb)
## Data Manipulation and Utility functions
### Pivot Functions
Lets you use *MSTICPy* functionality in an "entity-centric" way.
All functions, queries and lookups that relate to a particular entity type
(e.g. Host, IpAddress, Url) are collected together as methods of that
entity class. So, if you want to do things with an IP address, just load
the IpAddress entity and browse its methods.
[Pivot Functions](https://msticpy.readthedocs.io/en/latest/data_analysis/PivotFunctions.html)
and
[Pivot Functions Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/PivotFunctions.ipynb)
### base64unpack
Base64 and archive (gz, zip, tar) extractor. It will try to identify any base64 encoded
strings and try decode them. If the result looks like one of the supported archive types it
will unpack the contents. The results of each decode/unpack are rechecked for further
base64 content and up to a specified depth.
[Base64 Decoding](https://msticpy.readthedocs.io/en/latest/data_analysis/Base64Unpack.html)
and
[Base64Unpack Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/Base64Unpack.ipynb)
### iocextract
Uses regular expressions to look for Indicator of Compromise (IoC) patterns - IP Addresses, URLs,
DNS domains, Hashes, file paths.
Input can be a single string or a pandas dataframe.
[IoC Extraction](https://msticpy.readthedocs.io/en/latest/data_analysis/IoCExtract.html)
and
[IoCExtract Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/IoCExtract.ipynb)
### eventcluster (experimental)
This module is intended to be used to summarize large numbers of
events into clusters of different patterns. High volume repeating
events can often make it difficult to see unique and interesting items.
<img src="./docs/source/data_analysis/_static/EventClustering_2a.png"
alt="Clustering"
title="Clustering based on command-line variability" height="400" />
This is an unsupervised learning module implemented using SciKit Learn DBScan.
[Event Clustering](https://msticpy.readthedocs.io/en/latest/data_analysis/EventClustering.html)
and
[Event Clustering Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/EventClustering.ipynb)
### auditdextract
Module to load and decode Linux audit logs. It collapses messages sharing the same
message ID into single events, decodes hex-encoded data fields and performs some
event-specific formatting and normalization (e.g. for process start events it will
re-assemble the process command line arguments into a single string).
### syslog_utils
Module to support an investigation of a Linux host with only syslog logging enabled.
This includes functions for collating host data, clustering logon events and detecting
user sessions containing suspicious activity.
### cmd_line
A module to support the detection of known malicious command line activity or suspicious
patterns of command line activity.
### domain_utils
A module to support investigation of domain names and URLs with functions to
validate a domain name and screenshot a URL.
### Notebook widgets
These are built from the [Jupyter ipywidgets](https://ipywidgets.readthedocs.io/) collection
and group common functionality useful in InfoSec tasks such as list pickers,
query time boundary settings and event display into an easy-to-use format.
<img src="./docs/source/visualization/_static/Widgets1.png"
alt="Time span Widget"
title="Query time setter" height="100" />
<img src="./docs/source/visualization/_static/Widgets4.png"
alt="Alert browser"
%package -n python3-msticpy
Summary: MSTIC Security Tools
Provides: python-msticpy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-msticpy
## Log Data Acquisition
QueryProvider is an extensible query library targeting Azure Sentinel/Log Analytics,
Splunk, OData
and other log data sources. It also has special support for
[Mordor](https://github.com/OTRF/mordor) data sets and using local data.
Built-in parameterized queries allow complex queries to be run
from a single function call. Add your own queries using a simple YAML
schema.
[Data Queries Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/Data_Queries.ipynb)
## Data Enrichment
### Threat Intelligence providers
The TILookup class can lookup IoCs across multiple TI providers. built-in
providers include AlienVault OTX, IBM XForce, VirusTotal and Azure Sentinel.
The input can be a single IoC observable or a pandas DataFrame containing
multiple observables. Depending on the provider, you may require an account
and an API key. Some providers also enforce throttling (especially for free
tiers), which might affect performing bulk lookups.
[TIProviders](https://msticpy.readthedocs.io/en/latest/data_acquisition/TIProviders.html)
and
[TILookup Usage Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/TIProviders.ipynb)
### GeoLocation Data
The GeoIP lookup classes allow you to match the geo-locations of IP addresses
using either:
- GeoLiteLookup - Maxmind Geolite (see <https://www.maxmind.com>)
- IPStackLookup - IPStack (see <https://ipstack.com>)
<img src="./docs/source/visualization/_static/folium_sf_zoom.png"
alt="Folium map"
title="Plotting Geo IP Location" height="200" />
[GeoIP Lookup](https://msticpy.readthedocs.io/en/latest/data_acquisition/GeoIPLookups.html)
and
[GeoIP Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/GeoIPLookups.ipynb)
### Azure Resource Data, Storage and Azure Sentinel API
The AzureData module contains functionality for enriching data regarding Azure host
details with additional host details exposed via the Azure API. The AzureSentinel
module allows you to query incidents, retrieve detector and hunting
queries. AzureBlogStorage lets you read and write data from blob storage.
[Azure Resource APIs](https://msticpy.readthedocs.io/en/latest/data_acquisition/AzureData.html),
[Azure Sentinel APIs](https://msticpy.readthedocs.io/en/latest/data_acquisition/Sentinel.html),
[Azure Storage](https://msticpy.readthedocs.io/en/latest/data_acquisition/AzureBlobStorage.html)
## Security Analysis
This subpackage contains several modules helpful for working on security investigations and hunting:
### Anomalous Sequence Detection
Detect unusual sequences of events in your Office, Active Directory or other log data.
You can extract sessions (e.g. activity initiated by the same account) and identify and
visualize unusual sequences of activity. For example, detecting an attacker setting
a mail forwarding rule on someone's mailbox.
[Anomalous Sessions](https://msticpy.readthedocs.io/en/latest/data_analysis/AnomalousSequence.html)
and
[Anomalous Sequence Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/AnomalousSequence.ipynb)
### Time Series Analysis
Time series analysis allows you to identify unusual patterns in your log data
taking into account normal seasonal variations (e.g. the regular ebb and flow of
events over hours of the day, days of the week, etc.). Using both analysis and
visualization highlights unusual traffic flows or event activity for any data
set.
<img src="./docs/source/visualization/_static/TimeSeriesAnomalieswithRangeTool.png"
alt="Time Series anomalies" title="Time Series anomalies" height="300" />
[Time Series](https://msticpy.readthedocs.io/en/latest/visualization/TimeSeriesAnomalies.html)
## Visualization
### Event Timelines
Display any log events on an interactive timeline. Using the
[Bokeh Visualization Library](https://bokeh.org/) the timeline control enables
you to visualize one or more event streams, interactively zoom into specific time
slots and view event details for plotted events.
<img src="./docs/source/visualization/_static/TimeLine-01.png"
alt="Timeline" title="Msticpy Timeline Control" height="300" />
[Timeline](https://msticpy.readthedocs.io/en/latest/visualization/EventTimeline.html)
and
[Timeline Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/EventTimeline.ipynb)
### Process Trees
The process tree functionality has two main components:
- Process Tree creation - taking a process creation log from a host and building
the parent-child relationships between processes in the data set.
- Process Tree visualization - this takes the processed output displays an interactive process tree using Bokeh plots.
There are a set of utility functions to extract individual and partial trees from the processed data set.
<img src="./docs/source/visualization/_static/process_tree3.png"
alt="Process Tree"
title="Interactive Process Tree" height="400" />
[Process Tree](https://msticpy.readthedocs.io/en/latest/visualization/ProcessTree.html)
and
[Process Tree Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/ProcessTree.ipynb)
## Data Manipulation and Utility functions
### Pivot Functions
Lets you use *MSTICPy* functionality in an "entity-centric" way.
All functions, queries and lookups that relate to a particular entity type
(e.g. Host, IpAddress, Url) are collected together as methods of that
entity class. So, if you want to do things with an IP address, just load
the IpAddress entity and browse its methods.
[Pivot Functions](https://msticpy.readthedocs.io/en/latest/data_analysis/PivotFunctions.html)
and
[Pivot Functions Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/PivotFunctions.ipynb)
### base64unpack
Base64 and archive (gz, zip, tar) extractor. It will try to identify any base64 encoded
strings and try decode them. If the result looks like one of the supported archive types it
will unpack the contents. The results of each decode/unpack are rechecked for further
base64 content and up to a specified depth.
[Base64 Decoding](https://msticpy.readthedocs.io/en/latest/data_analysis/Base64Unpack.html)
and
[Base64Unpack Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/Base64Unpack.ipynb)
### iocextract
Uses regular expressions to look for Indicator of Compromise (IoC) patterns - IP Addresses, URLs,
DNS domains, Hashes, file paths.
Input can be a single string or a pandas dataframe.
[IoC Extraction](https://msticpy.readthedocs.io/en/latest/data_analysis/IoCExtract.html)
and
[IoCExtract Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/IoCExtract.ipynb)
### eventcluster (experimental)
This module is intended to be used to summarize large numbers of
events into clusters of different patterns. High volume repeating
events can often make it difficult to see unique and interesting items.
<img src="./docs/source/data_analysis/_static/EventClustering_2a.png"
alt="Clustering"
title="Clustering based on command-line variability" height="400" />
This is an unsupervised learning module implemented using SciKit Learn DBScan.
[Event Clustering](https://msticpy.readthedocs.io/en/latest/data_analysis/EventClustering.html)
and
[Event Clustering Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/EventClustering.ipynb)
### auditdextract
Module to load and decode Linux audit logs. It collapses messages sharing the same
message ID into single events, decodes hex-encoded data fields and performs some
event-specific formatting and normalization (e.g. for process start events it will
re-assemble the process command line arguments into a single string).
### syslog_utils
Module to support an investigation of a Linux host with only syslog logging enabled.
This includes functions for collating host data, clustering logon events and detecting
user sessions containing suspicious activity.
### cmd_line
A module to support the detection of known malicious command line activity or suspicious
patterns of command line activity.
### domain_utils
A module to support investigation of domain names and URLs with functions to
validate a domain name and screenshot a URL.
### Notebook widgets
These are built from the [Jupyter ipywidgets](https://ipywidgets.readthedocs.io/) collection
and group common functionality useful in InfoSec tasks such as list pickers,
query time boundary settings and event display into an easy-to-use format.
<img src="./docs/source/visualization/_static/Widgets1.png"
alt="Time span Widget"
title="Query time setter" height="100" />
<img src="./docs/source/visualization/_static/Widgets4.png"
alt="Alert browser"
%package help
Summary: Development documents and examples for msticpy
Provides: python3-msticpy-doc
%description help
## Log Data Acquisition
QueryProvider is an extensible query library targeting Azure Sentinel/Log Analytics,
Splunk, OData
and other log data sources. It also has special support for
[Mordor](https://github.com/OTRF/mordor) data sets and using local data.
Built-in parameterized queries allow complex queries to be run
from a single function call. Add your own queries using a simple YAML
schema.
[Data Queries Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/Data_Queries.ipynb)
## Data Enrichment
### Threat Intelligence providers
The TILookup class can lookup IoCs across multiple TI providers. built-in
providers include AlienVault OTX, IBM XForce, VirusTotal and Azure Sentinel.
The input can be a single IoC observable or a pandas DataFrame containing
multiple observables. Depending on the provider, you may require an account
and an API key. Some providers also enforce throttling (especially for free
tiers), which might affect performing bulk lookups.
[TIProviders](https://msticpy.readthedocs.io/en/latest/data_acquisition/TIProviders.html)
and
[TILookup Usage Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/TIProviders.ipynb)
### GeoLocation Data
The GeoIP lookup classes allow you to match the geo-locations of IP addresses
using either:
- GeoLiteLookup - Maxmind Geolite (see <https://www.maxmind.com>)
- IPStackLookup - IPStack (see <https://ipstack.com>)
<img src="./docs/source/visualization/_static/folium_sf_zoom.png"
alt="Folium map"
title="Plotting Geo IP Location" height="200" />
[GeoIP Lookup](https://msticpy.readthedocs.io/en/latest/data_acquisition/GeoIPLookups.html)
and
[GeoIP Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/GeoIPLookups.ipynb)
### Azure Resource Data, Storage and Azure Sentinel API
The AzureData module contains functionality for enriching data regarding Azure host
details with additional host details exposed via the Azure API. The AzureSentinel
module allows you to query incidents, retrieve detector and hunting
queries. AzureBlogStorage lets you read and write data from blob storage.
[Azure Resource APIs](https://msticpy.readthedocs.io/en/latest/data_acquisition/AzureData.html),
[Azure Sentinel APIs](https://msticpy.readthedocs.io/en/latest/data_acquisition/Sentinel.html),
[Azure Storage](https://msticpy.readthedocs.io/en/latest/data_acquisition/AzureBlobStorage.html)
## Security Analysis
This subpackage contains several modules helpful for working on security investigations and hunting:
### Anomalous Sequence Detection
Detect unusual sequences of events in your Office, Active Directory or other log data.
You can extract sessions (e.g. activity initiated by the same account) and identify and
visualize unusual sequences of activity. For example, detecting an attacker setting
a mail forwarding rule on someone's mailbox.
[Anomalous Sessions](https://msticpy.readthedocs.io/en/latest/data_analysis/AnomalousSequence.html)
and
[Anomalous Sequence Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/AnomalousSequence.ipynb)
### Time Series Analysis
Time series analysis allows you to identify unusual patterns in your log data
taking into account normal seasonal variations (e.g. the regular ebb and flow of
events over hours of the day, days of the week, etc.). Using both analysis and
visualization highlights unusual traffic flows or event activity for any data
set.
<img src="./docs/source/visualization/_static/TimeSeriesAnomalieswithRangeTool.png"
alt="Time Series anomalies" title="Time Series anomalies" height="300" />
[Time Series](https://msticpy.readthedocs.io/en/latest/visualization/TimeSeriesAnomalies.html)
## Visualization
### Event Timelines
Display any log events on an interactive timeline. Using the
[Bokeh Visualization Library](https://bokeh.org/) the timeline control enables
you to visualize one or more event streams, interactively zoom into specific time
slots and view event details for plotted events.
<img src="./docs/source/visualization/_static/TimeLine-01.png"
alt="Timeline" title="Msticpy Timeline Control" height="300" />
[Timeline](https://msticpy.readthedocs.io/en/latest/visualization/EventTimeline.html)
and
[Timeline Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/EventTimeline.ipynb)
### Process Trees
The process tree functionality has two main components:
- Process Tree creation - taking a process creation log from a host and building
the parent-child relationships between processes in the data set.
- Process Tree visualization - this takes the processed output displays an interactive process tree using Bokeh plots.
There are a set of utility functions to extract individual and partial trees from the processed data set.
<img src="./docs/source/visualization/_static/process_tree3.png"
alt="Process Tree"
title="Interactive Process Tree" height="400" />
[Process Tree](https://msticpy.readthedocs.io/en/latest/visualization/ProcessTree.html)
and
[Process Tree Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/ProcessTree.ipynb)
## Data Manipulation and Utility functions
### Pivot Functions
Lets you use *MSTICPy* functionality in an "entity-centric" way.
All functions, queries and lookups that relate to a particular entity type
(e.g. Host, IpAddress, Url) are collected together as methods of that
entity class. So, if you want to do things with an IP address, just load
the IpAddress entity and browse its methods.
[Pivot Functions](https://msticpy.readthedocs.io/en/latest/data_analysis/PivotFunctions.html)
and
[Pivot Functions Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/PivotFunctions.ipynb)
### base64unpack
Base64 and archive (gz, zip, tar) extractor. It will try to identify any base64 encoded
strings and try decode them. If the result looks like one of the supported archive types it
will unpack the contents. The results of each decode/unpack are rechecked for further
base64 content and up to a specified depth.
[Base64 Decoding](https://msticpy.readthedocs.io/en/latest/data_analysis/Base64Unpack.html)
and
[Base64Unpack Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/Base64Unpack.ipynb)
### iocextract
Uses regular expressions to look for Indicator of Compromise (IoC) patterns - IP Addresses, URLs,
DNS domains, Hashes, file paths.
Input can be a single string or a pandas dataframe.
[IoC Extraction](https://msticpy.readthedocs.io/en/latest/data_analysis/IoCExtract.html)
and
[IoCExtract Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/IoCExtract.ipynb)
### eventcluster (experimental)
This module is intended to be used to summarize large numbers of
events into clusters of different patterns. High volume repeating
events can often make it difficult to see unique and interesting items.
<img src="./docs/source/data_analysis/_static/EventClustering_2a.png"
alt="Clustering"
title="Clustering based on command-line variability" height="400" />
This is an unsupervised learning module implemented using SciKit Learn DBScan.
[Event Clustering](https://msticpy.readthedocs.io/en/latest/data_analysis/EventClustering.html)
and
[Event Clustering Notebook](https://github.com/microsoft/msticpy/blob/master/docs/notebooks/EventClustering.ipynb)
### auditdextract
Module to load and decode Linux audit logs. It collapses messages sharing the same
message ID into single events, decodes hex-encoded data fields and performs some
event-specific formatting and normalization (e.g. for process start events it will
re-assemble the process command line arguments into a single string).
### syslog_utils
Module to support an investigation of a Linux host with only syslog logging enabled.
This includes functions for collating host data, clustering logon events and detecting
user sessions containing suspicious activity.
### cmd_line
A module to support the detection of known malicious command line activity or suspicious
patterns of command line activity.
### domain_utils
A module to support investigation of domain names and URLs with functions to
validate a domain name and screenshot a URL.
### Notebook widgets
These are built from the [Jupyter ipywidgets](https://ipywidgets.readthedocs.io/) collection
and group common functionality useful in InfoSec tasks such as list pickers,
query time boundary settings and event display into an easy-to-use format.
<img src="./docs/source/visualization/_static/Widgets1.png"
alt="Time span Widget"
title="Query time setter" height="100" />
<img src="./docs/source/visualization/_static/Widgets4.png"
alt="Alert browser"
%prep
%autosetup -n msticpy-2.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-msticpy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.4.0-1
- Package Spec generated
|