summaryrefslogtreecommitdiff
path: root/python-mtse.spec
blob: 0edffb3eb5beeb009e91bc43aa3ea6e5d6269c9c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
%global _empty_manifest_terminate_build 0
Name:		python-mtse
Version:	0.1.6
Release:	1
Summary:	Multi Time Series Encoders
License:	Apache 2.0
URL:		https://github.com/FractalySyn/mtse
Source0:	https://mirrors.aliyun.com/pypi/web/packages/7f/e2/83c5b6608acfaa38c6853d19cc5871f5409d3a8e89425b28f36443dcb077/mtse-0.1.6.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-matplotlib
Requires:	python3-setuptools

%description
# Multi Time Series Encoders

The objective of this python package is to make easy the encoding and the classification/regression of multivariate time series (**mts**) data even when these are asynchronous. We say that data are of type **mts** when each observation is associated with multiple time series (e.g. the vital signs of a patient at a specific period).

## Installation

The current version has been developed in Python 3.7. It also works in Python 3.8. If you encounter an issue, please try to run it again in a virtual machine containing Python 3.7 or 3.8.

```bash
pip install mtse
```

## Sample code

```python
import mtse

### Load sample data ###
train, val, test, norm = mtse.get_sample(return_norm=True)

### Using the class `mtse` ###
mtan = mtse.mtse(device='cuda', seed=1, experiment_id='mtan')
mtan.load_data(train, val, test, norm=norm)
mtan.build_model('mtan', 'regression', learn_emb=True, early_stop=10, cuda_empty_cache=True)
mtan.train(lossf='mape', n_iters=200, save_startegy='best')
mtan.predict(checkpoint='best')
mtan.encode_ts(data_to_embed='test', embed_pandas=True)
```

**More details and examples in the documentation**

## What can be implemented / improved

#### Encoders
  - [x] mTAN - Multi Time Attention Network - encoder
  - [ ] mTAN - Multi Time Attention Network - encoder-decoder
  - [ ] SeFT - Set Function for Time series
  - [ ] STraTS - Self-supervised Transformer for Time-Series
  - [ ] ODE-based encoders

Note that we only implemented the mTAN encoder as a baseline for now. At this stage, this model works only for supervised learning, meaning that it uses the target variable to compute the loss and update the encoder weights. Thus, the priority would be to implement an unsupervised encoder next (encoder-decoder models or self-supervised encoders).

#### Other features
  - Cross-validation evaluation, prediction and encoding
  - Support for other data inputs in the dataset classes (currently the `mtan_Dataset` class)
  - Support for time-series forecasting and inference tasks

## References

Satya Narayan Shukla and Benjamin Marlin, ["Multi-Time Attention Networks for Irregularly Sampled Time Series"](https://openreview.net/forum?id=4c0J6lwQ4_), *International Conference on Learning Representations*, 2021.




%package -n python3-mtse
Summary:	Multi Time Series Encoders
Provides:	python-mtse
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mtse
# Multi Time Series Encoders

The objective of this python package is to make easy the encoding and the classification/regression of multivariate time series (**mts**) data even when these are asynchronous. We say that data are of type **mts** when each observation is associated with multiple time series (e.g. the vital signs of a patient at a specific period).

## Installation

The current version has been developed in Python 3.7. It also works in Python 3.8. If you encounter an issue, please try to run it again in a virtual machine containing Python 3.7 or 3.8.

```bash
pip install mtse
```

## Sample code

```python
import mtse

### Load sample data ###
train, val, test, norm = mtse.get_sample(return_norm=True)

### Using the class `mtse` ###
mtan = mtse.mtse(device='cuda', seed=1, experiment_id='mtan')
mtan.load_data(train, val, test, norm=norm)
mtan.build_model('mtan', 'regression', learn_emb=True, early_stop=10, cuda_empty_cache=True)
mtan.train(lossf='mape', n_iters=200, save_startegy='best')
mtan.predict(checkpoint='best')
mtan.encode_ts(data_to_embed='test', embed_pandas=True)
```

**More details and examples in the documentation**

## What can be implemented / improved

#### Encoders
  - [x] mTAN - Multi Time Attention Network - encoder
  - [ ] mTAN - Multi Time Attention Network - encoder-decoder
  - [ ] SeFT - Set Function for Time series
  - [ ] STraTS - Self-supervised Transformer for Time-Series
  - [ ] ODE-based encoders

Note that we only implemented the mTAN encoder as a baseline for now. At this stage, this model works only for supervised learning, meaning that it uses the target variable to compute the loss and update the encoder weights. Thus, the priority would be to implement an unsupervised encoder next (encoder-decoder models or self-supervised encoders).

#### Other features
  - Cross-validation evaluation, prediction and encoding
  - Support for other data inputs in the dataset classes (currently the `mtan_Dataset` class)
  - Support for time-series forecasting and inference tasks

## References

Satya Narayan Shukla and Benjamin Marlin, ["Multi-Time Attention Networks for Irregularly Sampled Time Series"](https://openreview.net/forum?id=4c0J6lwQ4_), *International Conference on Learning Representations*, 2021.




%package help
Summary:	Development documents and examples for mtse
Provides:	python3-mtse-doc
%description help
# Multi Time Series Encoders

The objective of this python package is to make easy the encoding and the classification/regression of multivariate time series (**mts**) data even when these are asynchronous. We say that data are of type **mts** when each observation is associated with multiple time series (e.g. the vital signs of a patient at a specific period).

## Installation

The current version has been developed in Python 3.7. It also works in Python 3.8. If you encounter an issue, please try to run it again in a virtual machine containing Python 3.7 or 3.8.

```bash
pip install mtse
```

## Sample code

```python
import mtse

### Load sample data ###
train, val, test, norm = mtse.get_sample(return_norm=True)

### Using the class `mtse` ###
mtan = mtse.mtse(device='cuda', seed=1, experiment_id='mtan')
mtan.load_data(train, val, test, norm=norm)
mtan.build_model('mtan', 'regression', learn_emb=True, early_stop=10, cuda_empty_cache=True)
mtan.train(lossf='mape', n_iters=200, save_startegy='best')
mtan.predict(checkpoint='best')
mtan.encode_ts(data_to_embed='test', embed_pandas=True)
```

**More details and examples in the documentation**

## What can be implemented / improved

#### Encoders
  - [x] mTAN - Multi Time Attention Network - encoder
  - [ ] mTAN - Multi Time Attention Network - encoder-decoder
  - [ ] SeFT - Set Function for Time series
  - [ ] STraTS - Self-supervised Transformer for Time-Series
  - [ ] ODE-based encoders

Note that we only implemented the mTAN encoder as a baseline for now. At this stage, this model works only for supervised learning, meaning that it uses the target variable to compute the loss and update the encoder weights. Thus, the priority would be to implement an unsupervised encoder next (encoder-decoder models or self-supervised encoders).

#### Other features
  - Cross-validation evaluation, prediction and encoding
  - Support for other data inputs in the dataset classes (currently the `mtan_Dataset` class)
  - Support for time-series forecasting and inference tasks

## References

Satya Narayan Shukla and Benjamin Marlin, ["Multi-Time Attention Networks for Irregularly Sampled Time Series"](https://openreview.net/forum?id=4c0J6lwQ4_), *International Conference on Learning Representations*, 2021.




%prep
%autosetup -n mtse-0.1.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mtse -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.6-1
- Package Spec generated