1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
%global _empty_manifest_terminate_build 0
Name: python-naogi
Version: 0.0.6
Release: 1
Summary: Abstract class for Naogi ML deployment
License: MIT License
URL: https://github.com/Naogi/naogi_model
Source0: https://mirrors.aliyun.com/pypi/web/packages/e4/2f/334fdce0d9b6a3672e3dab71d5e638faccaf9d39fc6911f4a5f89dab64c5/naogi-0.0.6.tar.gz
BuildArch: noarch
Requires: python3-flask
%description
# naogi_model
NaogiModel it is an abstract class for the naogi.com ML deployment platform
## How to deploy via naogi.com
* Add `naogi` to your project requirements.txt
* create file `naogi.py` in the root directory (copypaste file from [naogi.py](https://github.com/Naogi/naogi_model))
* implement your logic of model loading, prepareing and calling
* go to you naogi.com profile, create project and connect git
<br>
<br>
## How it works? (What to implement in naogi.py)
### Loading model (server starting time)
When naogi server is starting, it call `load_model(self)` -- you have to implement model loading logic in that function (loading from file, internet, etc.)
Here you have to load and init your model and save the model object to some variable
Example
```python
def load_model(self):
self.model = __get_model()
self.model.load_weights()
```
<br>
<br>
### Prepareing (request time)
When you call [GET/POST] /prepare of your API `prepare(self, params_dict)` is calling first.
All request params can be found in `params_dict`. Here you can prepare you params: open and modify Image, transform and normalize text and safe data for `prepare` to self attribute.
Example
```python
# now you can make GET /predict?text_data=My-long-text
# (and not worry about spaces)
def prepare(self, params_dict):
self.text = params_dict['text_data'].strip()
```
<br>
<br>
### Predicting (request time)
After request params prepareing `predict(self)` is calling.
```python
def predict(self):
raw = self.model.predict(self.text)
return __from_raw_to_some(raw)
```
Here you have to return the value, that valid for some Renderer class (json, file, custom)
<br>
<br>
### Rendering (request time)
And the last step is calling `renderer().render(...)` and passing the result of `predict`
Out of the box you can use `JsonRenderer` and `FileRenderer`
or
you can create custom renderer from `AbstractRenderer`
```python
class MyRenderer(AbstractRenderer):
def render(data):
return ...
```
```python
def renderer(self):
return MyRenderer
```
`JsonRenderer` accepts any json.dumps valid data
`FileRenderer` uses flask's `send_file` under the hood, so you can pass any bytes. [Additional params can watch here](https://github.com/Naogi/naogi_model/blob/main/src/naogi/__init__.py#L17)
<br>
<br>
### Fin
And finally you can make API calls to `<your-naogi-project-url>/predict` with params
## Development
...
### Testing
Before testing you should install **pytest**
From root folder
```shell
PYTHONPATH='./' pytest tests/renderers/pil_image_renderer.py
```
### Deploy
```shell
rm -rf dist/*
python3 -m build
python3 -m twine upload --repository pypi dist/*
```
%package -n python3-naogi
Summary: Abstract class for Naogi ML deployment
Provides: python-naogi
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-naogi
# naogi_model
NaogiModel it is an abstract class for the naogi.com ML deployment platform
## How to deploy via naogi.com
* Add `naogi` to your project requirements.txt
* create file `naogi.py` in the root directory (copypaste file from [naogi.py](https://github.com/Naogi/naogi_model))
* implement your logic of model loading, prepareing and calling
* go to you naogi.com profile, create project and connect git
<br>
<br>
## How it works? (What to implement in naogi.py)
### Loading model (server starting time)
When naogi server is starting, it call `load_model(self)` -- you have to implement model loading logic in that function (loading from file, internet, etc.)
Here you have to load and init your model and save the model object to some variable
Example
```python
def load_model(self):
self.model = __get_model()
self.model.load_weights()
```
<br>
<br>
### Prepareing (request time)
When you call [GET/POST] /prepare of your API `prepare(self, params_dict)` is calling first.
All request params can be found in `params_dict`. Here you can prepare you params: open and modify Image, transform and normalize text and safe data for `prepare` to self attribute.
Example
```python
# now you can make GET /predict?text_data=My-long-text
# (and not worry about spaces)
def prepare(self, params_dict):
self.text = params_dict['text_data'].strip()
```
<br>
<br>
### Predicting (request time)
After request params prepareing `predict(self)` is calling.
```python
def predict(self):
raw = self.model.predict(self.text)
return __from_raw_to_some(raw)
```
Here you have to return the value, that valid for some Renderer class (json, file, custom)
<br>
<br>
### Rendering (request time)
And the last step is calling `renderer().render(...)` and passing the result of `predict`
Out of the box you can use `JsonRenderer` and `FileRenderer`
or
you can create custom renderer from `AbstractRenderer`
```python
class MyRenderer(AbstractRenderer):
def render(data):
return ...
```
```python
def renderer(self):
return MyRenderer
```
`JsonRenderer` accepts any json.dumps valid data
`FileRenderer` uses flask's `send_file` under the hood, so you can pass any bytes. [Additional params can watch here](https://github.com/Naogi/naogi_model/blob/main/src/naogi/__init__.py#L17)
<br>
<br>
### Fin
And finally you can make API calls to `<your-naogi-project-url>/predict` with params
## Development
...
### Testing
Before testing you should install **pytest**
From root folder
```shell
PYTHONPATH='./' pytest tests/renderers/pil_image_renderer.py
```
### Deploy
```shell
rm -rf dist/*
python3 -m build
python3 -m twine upload --repository pypi dist/*
```
%package help
Summary: Development documents and examples for naogi
Provides: python3-naogi-doc
%description help
# naogi_model
NaogiModel it is an abstract class for the naogi.com ML deployment platform
## How to deploy via naogi.com
* Add `naogi` to your project requirements.txt
* create file `naogi.py` in the root directory (copypaste file from [naogi.py](https://github.com/Naogi/naogi_model))
* implement your logic of model loading, prepareing and calling
* go to you naogi.com profile, create project and connect git
<br>
<br>
## How it works? (What to implement in naogi.py)
### Loading model (server starting time)
When naogi server is starting, it call `load_model(self)` -- you have to implement model loading logic in that function (loading from file, internet, etc.)
Here you have to load and init your model and save the model object to some variable
Example
```python
def load_model(self):
self.model = __get_model()
self.model.load_weights()
```
<br>
<br>
### Prepareing (request time)
When you call [GET/POST] /prepare of your API `prepare(self, params_dict)` is calling first.
All request params can be found in `params_dict`. Here you can prepare you params: open and modify Image, transform and normalize text and safe data for `prepare` to self attribute.
Example
```python
# now you can make GET /predict?text_data=My-long-text
# (and not worry about spaces)
def prepare(self, params_dict):
self.text = params_dict['text_data'].strip()
```
<br>
<br>
### Predicting (request time)
After request params prepareing `predict(self)` is calling.
```python
def predict(self):
raw = self.model.predict(self.text)
return __from_raw_to_some(raw)
```
Here you have to return the value, that valid for some Renderer class (json, file, custom)
<br>
<br>
### Rendering (request time)
And the last step is calling `renderer().render(...)` and passing the result of `predict`
Out of the box you can use `JsonRenderer` and `FileRenderer`
or
you can create custom renderer from `AbstractRenderer`
```python
class MyRenderer(AbstractRenderer):
def render(data):
return ...
```
```python
def renderer(self):
return MyRenderer
```
`JsonRenderer` accepts any json.dumps valid data
`FileRenderer` uses flask's `send_file` under the hood, so you can pass any bytes. [Additional params can watch here](https://github.com/Naogi/naogi_model/blob/main/src/naogi/__init__.py#L17)
<br>
<br>
### Fin
And finally you can make API calls to `<your-naogi-project-url>/predict` with params
## Development
...
### Testing
Before testing you should install **pytest**
From root folder
```shell
PYTHONPATH='./' pytest tests/renderers/pil_image_renderer.py
```
### Deploy
```shell
rm -rf dist/*
python3 -m build
python3 -m twine upload --repository pypi dist/*
```
%prep
%autosetup -n naogi-0.0.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-naogi -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.6-1
- Package Spec generated
|