summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-05 13:16:53 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-05 13:16:53 +0000
commitb2215b9b027e7e80492ff6b4f28fc2e1ed1c0cf6 (patch)
tree12dd1e017c0eac97a39b791b9955a328cbcfe71c
parentac53d35bb0a7ebf56f7ac8443554d82624652c04 (diff)
automatic import of python-napari-pyclesperanto-assistantopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-napari-pyclesperanto-assistant.spec654
-rw-r--r--sources1
3 files changed, 656 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..5d8e0bc 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/napari_pyclesperanto_assistant-0.22.1.tar.gz
diff --git a/python-napari-pyclesperanto-assistant.spec b/python-napari-pyclesperanto-assistant.spec
new file mode 100644
index 0000000..2f6575e
--- /dev/null
+++ b/python-napari-pyclesperanto-assistant.spec
@@ -0,0 +1,654 @@
+%global _empty_manifest_terminate_build 0
+Name: python-napari-pyclesperanto-assistant
+Version: 0.22.1
+Release: 1
+Summary: GPU-accelerated image processing in napari using OpenCL
+License: BSD-3-Clause
+URL: https://github.com/clesperanto/napari_pyclesperanto_assistant
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d2/f4/7cb910f032746576a32a4c601575dede769af02eebbb25f67f4cf2d5d7ec/napari_pyclesperanto_assistant-0.22.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-napari-plugin-engine
+Requires: python3-pyopencl
+Requires: python3-toolz
+Requires: python3-scikit-image
+Requires: python3-napari
+Requires: python3-pyclesperanto-prototype
+Requires: python3-magicgui
+Requires: python3-numpy
+Requires: python3-pyperclip
+Requires: python3-loguru
+Requires: python3-jupytext
+Requires: python3-jupyter
+Requires: python3-pandas
+Requires: python3-napari-tools-menu
+Requires: python3-napari-time-slicer
+Requires: python3-napari-skimage-regionprops
+Requires: python3-napari-workflows
+Requires: python3-napari-assistant
+
+%description
+# napari-pyclesperanto-assistant
+[![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftag%2Fclesperanto.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/clesperanto)
+[![website](https://img.shields.io/website?url=http%3A%2F%2Fclesperanto.net)](http://clesperanto.net)
+[![License](https://img.shields.io/pypi/l/napari-pyclesperanto-assistant.svg?color=green)](https://github.com/clesperanto/napari-pyclesperanto-assistant/raw/master/LICENSE)
+[![PyPI](https://img.shields.io/pypi/v/napari-pyclesperanto-assistant.svg?color=green)](https://pypi.org/project/napari-pyclesperanto-assistant)
+[![Python Version](https://img.shields.io/pypi/pyversions/napari-pyclesperanto-assistant.svg?color=green)](https://python.org)
+[![tests](https://github.com/clesperanto/napari_pyclesperanto_assistant/workflows/tests/badge.svg)](https://github.com/clesperanto/napari_pyclesperanto_assistant/actions)
+[![codecov](https://codecov.io/gh/clesperanto/napari_pyclesperanto_assistant/branch/master/graph/badge.svg)](https://codecov.io/gh/clesperanto/napari_pyclesperanto_assistant)
+[![Development Status](https://img.shields.io/pypi/status/napari_pyclesperanto_assistant.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha)
+[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-pyclesperanto-assistant)](https://napari-hub.org/plugins/napari-pyclesperanto-assistant)
+[![DOI](https://zenodo.org/badge/322312181.svg)](https://zenodo.org/badge/latestdoi/322312181)
+
+The py-clEsperanto-assistant is a yet experimental [napari](https://github.com/napari/napari) plugin for building GPU-accelerated image processing workflows.
+It is part of the [clEsperanto](http://clesperanto.net) project and thus, aims at removing programming language related barriers between image processing ecosystems in the life sciences.
+It uses [pyclesperanto](https://github.com/clEsperanto/pyclesperanto_prototype) and with that [pyopencl](https://documen.tician.de/pyopencl/) as backend for processing images.
+
+This napari plugin adds some menu entries to the Tools menu. You can recognize them with their suffix `(clEsperanto)` in brackets.
+Furthermore, it can be used from the [napari-assistant](https://www.napari-hub.org/plugins/napari-assistant) graphical user interface.
+Therefore, just click the menu `Tools > Utilities > Assistant (na)` or run `naparia` from the command line.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/virtual_4d_support1.gif)
+
+## Usage
+
+### Start up the assistant
+Start up napari, e.g. from the command line:
+```
+napari
+```
+
+Load example data, e.g. from the menu `File > Open Samples > clEsperanto > CalibZAPWfixed` and
+start the assistant from the menu `Tools > Utilities > Assistant (na)`.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot1.png)
+
+In case of two dimensional timelapse data, an initial conversion step might be necessary depending on your data source.
+Click the menu `Tools > Utilities > Convert to 2d timelapse`. In the dialog, select the dataset and click ok.
+You can delete the original dataset afterwards:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot1a.png)
+
+### Set up a workflow
+
+Choose categories of operations in the top right panel, for example start with denoising using a Gaussian Blur with sigma 1 in x and y.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2.png)
+
+Continue with background removal using the top-hat filter with radius 5 in x and y.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2a.png)
+
+For labeling the objects, use [Voronoi-Otsu-Labeling](https://nbviewer.jupyter.org/github/clEsperanto/pyclesperanto_prototype/blob/master/demo/segmentation/voronoi_otsu_labeling.ipynb) with both sigma parameters set to 2.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2b.png)
+
+The labeled objects can be extended using a Voronoi diagram to derive a estimations of cell boundaries.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2c.png)
+
+You can then configure napari to show the label boundaries on top of the original image:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2d.png)
+
+When your workflow is set up, click the play button below your dataset:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/timelapse_2d.gif)
+
+### Neighbor statistics
+
+When working with 2D or 3D data you can analyze measurements in relationship with their neighbors.
+For example, you can measure the area of blobs as shown in the example shown below using the menu
+`Tools > Measurements > Statistics of labeled pixels (clesperant)` and visualize it as `area` image by double-clicking on the table column (1).
+Additionally, you can measure the maximum area of the 6 nearest neighbors using the menu `Tools > Measurments > Neighborhood statistics of measurements`.
+The new column will then be called "max_nn6_area..." (2). When visualizing such parametric images next by each other, it is recommended to use
+[napari-brightness-contrast](https://www.napari-hub.org/plugins/napari-brightness-contrast) and visualize the same intensity range to see differences correctly.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/neighbor_statistics.png)
+
+### Code generation
+You can also export your workflow as Python/Jython code or as notebook. See the [napari-assistant documentation](https://www.napari-hub.org/plugins/napari-assistant) for details.
+
+## Features
+[pyclesperanto](https://github.com/clEsperanto/pyclesperanto_prototype) offers various possibilities for processing images. It comes from developers who work in life sciences and thus, it may be focused towards processing two- and three-dimensional microscopy image data showing cells and tissues. A selection of pyclesperanto's functionality is available via the assistant user interface. Typical workflows which can be built with this assistant include
+* image filtering
+ * denoising / noise reduction (mean, median, Gaussian blur)
+ * background subtraction for uneven illumination or out-of-focus light (bottom-hat, top-hat, subtract Gaussian background)
+ * grey value morphology (local minimum, maximum. variance)
+ * gamma correction
+ * Laplace operator
+ * Sobel operator
+* combining images
+ * masking
+ * image math (adding, subtracting, multiplying, dividing images)
+ * absolute / squared difference
+* image transformations
+ * translation
+ * rotation
+ * scale
+ * reduce stack
+ * sub-stacks
+* image projections
+ * minimum / mean / maximum / sum / standard deviation projections
+* image segmentation
+ * binarization (thresholding, local maxima detection)
+ * labeling
+ * regionalization
+ * instance segmentation
+ * semantic segmentation
+ * detect label edges
+ * label spots
+ * connected component labeling
+ * Voronoi-Otsu-labeling
+* post-processing of binary images
+ * dilation
+ * erosion
+ * binary opening
+ * binary closing
+ * binary and / or / xor
+* post-processing of label images
+ * dilation (expansion) of labels
+ * extend labels via Voronoi
+ * exclude labels on edges
+ * exclude labels within / out of size / value range
+ * merge touching labels
+* parametric maps
+ * proximal / touching neighbor count
+ * distance measurements to touching / proximal / n-nearest neighbors
+ * pixel count map
+ * mean / maximum / extension ratio map
+* label measurements / post processing of parametric maps
+ * minimum / mean / maximum / standard deviation intensity maps
+ * minimum / mean / maximum / standard deviation of touching / n-nearest / neighbors
+* neighbor meshes
+ * touching neighbors
+ * n-nearest neighbors
+ * proximal neighbors
+ * distance meshes
+* measurements based on label images
+ * bounding box 2D / 3D
+ * minimum / mean / maximum / sum / standard deviation intensity
+ * center of mass
+ * centroid
+ * mean / maximum distance to centroid (and extension ratio shape descriptor)
+ * mean / maximum distance to center of mass (and extension ratio shape descriptor)
+ * statistics of neighbors (See related [publication](https://www.frontiersin.org/articles/10.3389/fcomp.2021.774396/full))
+* code export
+ * python / Fiji-compatible jython
+ * python jupyter notebooks
+* pyclesperanto scripting
+ * cell segmentation
+ * cell counting
+ * cell differentiation
+ * tissue classification
+
+## Installation
+
+It is recommended to install the assistant using conda. If you have never used conda before, it is recommended to read
+[this blog post](https://biapol.github.io/blog/johannes_mueller/anaconda_getting_started/) first.
+
+```shell
+conda create --name cle_39 python=3.9 napari-pyclesperanto-assistant
+conda activate cle_39
+```
+
+Mac-users please also install this:
+
+ conda install -c conda-forge ocl_icd_wrapper_apple
+
+Linux users please also install this:
+
+ conda install -c conda-forge ocl-icd-system
+
+You can then start the napari-assistant using this command:
+
+```
+naparia
+```
+
+
+## Feedback and contributions welcome!
+clEsperanto is developed in the open because we believe in the open source community. See our [community guidelines](https://clij.github.io/clij2-docs/community_guidelines). Feel free to drop feedback as [github issue](https://github.com/clEsperanto/pyclesperanto_prototype/issues) or via [image.sc](https://image.sc)
+
+## Acknowledgements
+This project was supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy – EXC2068 - Cluster of Excellence "Physics of Life" of TU Dresden.
+This project has been made possible in part by grant number [2021-240341 (Napari plugin accelerator grant)](https://chanzuckerberg.com/science/programs-resources/imaging/napari/improving-image-processing/) from the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley Community Foundation.
+
+[Imprint](https://clesperanto.github.io/imprint)
+
+
+
+%package -n python3-napari-pyclesperanto-assistant
+Summary: GPU-accelerated image processing in napari using OpenCL
+Provides: python-napari-pyclesperanto-assistant
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-napari-pyclesperanto-assistant
+# napari-pyclesperanto-assistant
+[![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftag%2Fclesperanto.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/clesperanto)
+[![website](https://img.shields.io/website?url=http%3A%2F%2Fclesperanto.net)](http://clesperanto.net)
+[![License](https://img.shields.io/pypi/l/napari-pyclesperanto-assistant.svg?color=green)](https://github.com/clesperanto/napari-pyclesperanto-assistant/raw/master/LICENSE)
+[![PyPI](https://img.shields.io/pypi/v/napari-pyclesperanto-assistant.svg?color=green)](https://pypi.org/project/napari-pyclesperanto-assistant)
+[![Python Version](https://img.shields.io/pypi/pyversions/napari-pyclesperanto-assistant.svg?color=green)](https://python.org)
+[![tests](https://github.com/clesperanto/napari_pyclesperanto_assistant/workflows/tests/badge.svg)](https://github.com/clesperanto/napari_pyclesperanto_assistant/actions)
+[![codecov](https://codecov.io/gh/clesperanto/napari_pyclesperanto_assistant/branch/master/graph/badge.svg)](https://codecov.io/gh/clesperanto/napari_pyclesperanto_assistant)
+[![Development Status](https://img.shields.io/pypi/status/napari_pyclesperanto_assistant.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha)
+[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-pyclesperanto-assistant)](https://napari-hub.org/plugins/napari-pyclesperanto-assistant)
+[![DOI](https://zenodo.org/badge/322312181.svg)](https://zenodo.org/badge/latestdoi/322312181)
+
+The py-clEsperanto-assistant is a yet experimental [napari](https://github.com/napari/napari) plugin for building GPU-accelerated image processing workflows.
+It is part of the [clEsperanto](http://clesperanto.net) project and thus, aims at removing programming language related barriers between image processing ecosystems in the life sciences.
+It uses [pyclesperanto](https://github.com/clEsperanto/pyclesperanto_prototype) and with that [pyopencl](https://documen.tician.de/pyopencl/) as backend for processing images.
+
+This napari plugin adds some menu entries to the Tools menu. You can recognize them with their suffix `(clEsperanto)` in brackets.
+Furthermore, it can be used from the [napari-assistant](https://www.napari-hub.org/plugins/napari-assistant) graphical user interface.
+Therefore, just click the menu `Tools > Utilities > Assistant (na)` or run `naparia` from the command line.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/virtual_4d_support1.gif)
+
+## Usage
+
+### Start up the assistant
+Start up napari, e.g. from the command line:
+```
+napari
+```
+
+Load example data, e.g. from the menu `File > Open Samples > clEsperanto > CalibZAPWfixed` and
+start the assistant from the menu `Tools > Utilities > Assistant (na)`.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot1.png)
+
+In case of two dimensional timelapse data, an initial conversion step might be necessary depending on your data source.
+Click the menu `Tools > Utilities > Convert to 2d timelapse`. In the dialog, select the dataset and click ok.
+You can delete the original dataset afterwards:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot1a.png)
+
+### Set up a workflow
+
+Choose categories of operations in the top right panel, for example start with denoising using a Gaussian Blur with sigma 1 in x and y.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2.png)
+
+Continue with background removal using the top-hat filter with radius 5 in x and y.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2a.png)
+
+For labeling the objects, use [Voronoi-Otsu-Labeling](https://nbviewer.jupyter.org/github/clEsperanto/pyclesperanto_prototype/blob/master/demo/segmentation/voronoi_otsu_labeling.ipynb) with both sigma parameters set to 2.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2b.png)
+
+The labeled objects can be extended using a Voronoi diagram to derive a estimations of cell boundaries.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2c.png)
+
+You can then configure napari to show the label boundaries on top of the original image:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2d.png)
+
+When your workflow is set up, click the play button below your dataset:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/timelapse_2d.gif)
+
+### Neighbor statistics
+
+When working with 2D or 3D data you can analyze measurements in relationship with their neighbors.
+For example, you can measure the area of blobs as shown in the example shown below using the menu
+`Tools > Measurements > Statistics of labeled pixels (clesperant)` and visualize it as `area` image by double-clicking on the table column (1).
+Additionally, you can measure the maximum area of the 6 nearest neighbors using the menu `Tools > Measurments > Neighborhood statistics of measurements`.
+The new column will then be called "max_nn6_area..." (2). When visualizing such parametric images next by each other, it is recommended to use
+[napari-brightness-contrast](https://www.napari-hub.org/plugins/napari-brightness-contrast) and visualize the same intensity range to see differences correctly.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/neighbor_statistics.png)
+
+### Code generation
+You can also export your workflow as Python/Jython code or as notebook. See the [napari-assistant documentation](https://www.napari-hub.org/plugins/napari-assistant) for details.
+
+## Features
+[pyclesperanto](https://github.com/clEsperanto/pyclesperanto_prototype) offers various possibilities for processing images. It comes from developers who work in life sciences and thus, it may be focused towards processing two- and three-dimensional microscopy image data showing cells and tissues. A selection of pyclesperanto's functionality is available via the assistant user interface. Typical workflows which can be built with this assistant include
+* image filtering
+ * denoising / noise reduction (mean, median, Gaussian blur)
+ * background subtraction for uneven illumination or out-of-focus light (bottom-hat, top-hat, subtract Gaussian background)
+ * grey value morphology (local minimum, maximum. variance)
+ * gamma correction
+ * Laplace operator
+ * Sobel operator
+* combining images
+ * masking
+ * image math (adding, subtracting, multiplying, dividing images)
+ * absolute / squared difference
+* image transformations
+ * translation
+ * rotation
+ * scale
+ * reduce stack
+ * sub-stacks
+* image projections
+ * minimum / mean / maximum / sum / standard deviation projections
+* image segmentation
+ * binarization (thresholding, local maxima detection)
+ * labeling
+ * regionalization
+ * instance segmentation
+ * semantic segmentation
+ * detect label edges
+ * label spots
+ * connected component labeling
+ * Voronoi-Otsu-labeling
+* post-processing of binary images
+ * dilation
+ * erosion
+ * binary opening
+ * binary closing
+ * binary and / or / xor
+* post-processing of label images
+ * dilation (expansion) of labels
+ * extend labels via Voronoi
+ * exclude labels on edges
+ * exclude labels within / out of size / value range
+ * merge touching labels
+* parametric maps
+ * proximal / touching neighbor count
+ * distance measurements to touching / proximal / n-nearest neighbors
+ * pixel count map
+ * mean / maximum / extension ratio map
+* label measurements / post processing of parametric maps
+ * minimum / mean / maximum / standard deviation intensity maps
+ * minimum / mean / maximum / standard deviation of touching / n-nearest / neighbors
+* neighbor meshes
+ * touching neighbors
+ * n-nearest neighbors
+ * proximal neighbors
+ * distance meshes
+* measurements based on label images
+ * bounding box 2D / 3D
+ * minimum / mean / maximum / sum / standard deviation intensity
+ * center of mass
+ * centroid
+ * mean / maximum distance to centroid (and extension ratio shape descriptor)
+ * mean / maximum distance to center of mass (and extension ratio shape descriptor)
+ * statistics of neighbors (See related [publication](https://www.frontiersin.org/articles/10.3389/fcomp.2021.774396/full))
+* code export
+ * python / Fiji-compatible jython
+ * python jupyter notebooks
+* pyclesperanto scripting
+ * cell segmentation
+ * cell counting
+ * cell differentiation
+ * tissue classification
+
+## Installation
+
+It is recommended to install the assistant using conda. If you have never used conda before, it is recommended to read
+[this blog post](https://biapol.github.io/blog/johannes_mueller/anaconda_getting_started/) first.
+
+```shell
+conda create --name cle_39 python=3.9 napari-pyclesperanto-assistant
+conda activate cle_39
+```
+
+Mac-users please also install this:
+
+ conda install -c conda-forge ocl_icd_wrapper_apple
+
+Linux users please also install this:
+
+ conda install -c conda-forge ocl-icd-system
+
+You can then start the napari-assistant using this command:
+
+```
+naparia
+```
+
+
+## Feedback and contributions welcome!
+clEsperanto is developed in the open because we believe in the open source community. See our [community guidelines](https://clij.github.io/clij2-docs/community_guidelines). Feel free to drop feedback as [github issue](https://github.com/clEsperanto/pyclesperanto_prototype/issues) or via [image.sc](https://image.sc)
+
+## Acknowledgements
+This project was supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy – EXC2068 - Cluster of Excellence "Physics of Life" of TU Dresden.
+This project has been made possible in part by grant number [2021-240341 (Napari plugin accelerator grant)](https://chanzuckerberg.com/science/programs-resources/imaging/napari/improving-image-processing/) from the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley Community Foundation.
+
+[Imprint](https://clesperanto.github.io/imprint)
+
+
+
+%package help
+Summary: Development documents and examples for napari-pyclesperanto-assistant
+Provides: python3-napari-pyclesperanto-assistant-doc
+%description help
+# napari-pyclesperanto-assistant
+[![Image.sc forum](https://img.shields.io/badge/dynamic/json.svg?label=forum&url=https%3A%2F%2Fforum.image.sc%2Ftag%2Fclesperanto.json&query=%24.topic_list.tags.0.topic_count&colorB=brightgreen&suffix=%20topics&logo=)](https://forum.image.sc/tag/clesperanto)
+[![website](https://img.shields.io/website?url=http%3A%2F%2Fclesperanto.net)](http://clesperanto.net)
+[![License](https://img.shields.io/pypi/l/napari-pyclesperanto-assistant.svg?color=green)](https://github.com/clesperanto/napari-pyclesperanto-assistant/raw/master/LICENSE)
+[![PyPI](https://img.shields.io/pypi/v/napari-pyclesperanto-assistant.svg?color=green)](https://pypi.org/project/napari-pyclesperanto-assistant)
+[![Python Version](https://img.shields.io/pypi/pyversions/napari-pyclesperanto-assistant.svg?color=green)](https://python.org)
+[![tests](https://github.com/clesperanto/napari_pyclesperanto_assistant/workflows/tests/badge.svg)](https://github.com/clesperanto/napari_pyclesperanto_assistant/actions)
+[![codecov](https://codecov.io/gh/clesperanto/napari_pyclesperanto_assistant/branch/master/graph/badge.svg)](https://codecov.io/gh/clesperanto/napari_pyclesperanto_assistant)
+[![Development Status](https://img.shields.io/pypi/status/napari_pyclesperanto_assistant.svg)](https://en.wikipedia.org/wiki/Software_release_life_cycle#Alpha)
+[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/napari-pyclesperanto-assistant)](https://napari-hub.org/plugins/napari-pyclesperanto-assistant)
+[![DOI](https://zenodo.org/badge/322312181.svg)](https://zenodo.org/badge/latestdoi/322312181)
+
+The py-clEsperanto-assistant is a yet experimental [napari](https://github.com/napari/napari) plugin for building GPU-accelerated image processing workflows.
+It is part of the [clEsperanto](http://clesperanto.net) project and thus, aims at removing programming language related barriers between image processing ecosystems in the life sciences.
+It uses [pyclesperanto](https://github.com/clEsperanto/pyclesperanto_prototype) and with that [pyopencl](https://documen.tician.de/pyopencl/) as backend for processing images.
+
+This napari plugin adds some menu entries to the Tools menu. You can recognize them with their suffix `(clEsperanto)` in brackets.
+Furthermore, it can be used from the [napari-assistant](https://www.napari-hub.org/plugins/napari-assistant) graphical user interface.
+Therefore, just click the menu `Tools > Utilities > Assistant (na)` or run `naparia` from the command line.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/virtual_4d_support1.gif)
+
+## Usage
+
+### Start up the assistant
+Start up napari, e.g. from the command line:
+```
+napari
+```
+
+Load example data, e.g. from the menu `File > Open Samples > clEsperanto > CalibZAPWfixed` and
+start the assistant from the menu `Tools > Utilities > Assistant (na)`.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot1.png)
+
+In case of two dimensional timelapse data, an initial conversion step might be necessary depending on your data source.
+Click the menu `Tools > Utilities > Convert to 2d timelapse`. In the dialog, select the dataset and click ok.
+You can delete the original dataset afterwards:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot1a.png)
+
+### Set up a workflow
+
+Choose categories of operations in the top right panel, for example start with denoising using a Gaussian Blur with sigma 1 in x and y.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2.png)
+
+Continue with background removal using the top-hat filter with radius 5 in x and y.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2a.png)
+
+For labeling the objects, use [Voronoi-Otsu-Labeling](https://nbviewer.jupyter.org/github/clEsperanto/pyclesperanto_prototype/blob/master/demo/segmentation/voronoi_otsu_labeling.ipynb) with both sigma parameters set to 2.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2b.png)
+
+The labeled objects can be extended using a Voronoi diagram to derive a estimations of cell boundaries.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2c.png)
+
+You can then configure napari to show the label boundaries on top of the original image:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/screenshot2d.png)
+
+When your workflow is set up, click the play button below your dataset:
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/timelapse_2d.gif)
+
+### Neighbor statistics
+
+When working with 2D or 3D data you can analyze measurements in relationship with their neighbors.
+For example, you can measure the area of blobs as shown in the example shown below using the menu
+`Tools > Measurements > Statistics of labeled pixels (clesperant)` and visualize it as `area` image by double-clicking on the table column (1).
+Additionally, you can measure the maximum area of the 6 nearest neighbors using the menu `Tools > Measurments > Neighborhood statistics of measurements`.
+The new column will then be called "max_nn6_area..." (2). When visualizing such parametric images next by each other, it is recommended to use
+[napari-brightness-contrast](https://www.napari-hub.org/plugins/napari-brightness-contrast) and visualize the same intensity range to see differences correctly.
+
+![](https://github.com/clEsperanto/napari_pyclesperanto_assistant/raw/master/docs/images/neighbor_statistics.png)
+
+### Code generation
+You can also export your workflow as Python/Jython code or as notebook. See the [napari-assistant documentation](https://www.napari-hub.org/plugins/napari-assistant) for details.
+
+## Features
+[pyclesperanto](https://github.com/clEsperanto/pyclesperanto_prototype) offers various possibilities for processing images. It comes from developers who work in life sciences and thus, it may be focused towards processing two- and three-dimensional microscopy image data showing cells and tissues. A selection of pyclesperanto's functionality is available via the assistant user interface. Typical workflows which can be built with this assistant include
+* image filtering
+ * denoising / noise reduction (mean, median, Gaussian blur)
+ * background subtraction for uneven illumination or out-of-focus light (bottom-hat, top-hat, subtract Gaussian background)
+ * grey value morphology (local minimum, maximum. variance)
+ * gamma correction
+ * Laplace operator
+ * Sobel operator
+* combining images
+ * masking
+ * image math (adding, subtracting, multiplying, dividing images)
+ * absolute / squared difference
+* image transformations
+ * translation
+ * rotation
+ * scale
+ * reduce stack
+ * sub-stacks
+* image projections
+ * minimum / mean / maximum / sum / standard deviation projections
+* image segmentation
+ * binarization (thresholding, local maxima detection)
+ * labeling
+ * regionalization
+ * instance segmentation
+ * semantic segmentation
+ * detect label edges
+ * label spots
+ * connected component labeling
+ * Voronoi-Otsu-labeling
+* post-processing of binary images
+ * dilation
+ * erosion
+ * binary opening
+ * binary closing
+ * binary and / or / xor
+* post-processing of label images
+ * dilation (expansion) of labels
+ * extend labels via Voronoi
+ * exclude labels on edges
+ * exclude labels within / out of size / value range
+ * merge touching labels
+* parametric maps
+ * proximal / touching neighbor count
+ * distance measurements to touching / proximal / n-nearest neighbors
+ * pixel count map
+ * mean / maximum / extension ratio map
+* label measurements / post processing of parametric maps
+ * minimum / mean / maximum / standard deviation intensity maps
+ * minimum / mean / maximum / standard deviation of touching / n-nearest / neighbors
+* neighbor meshes
+ * touching neighbors
+ * n-nearest neighbors
+ * proximal neighbors
+ * distance meshes
+* measurements based on label images
+ * bounding box 2D / 3D
+ * minimum / mean / maximum / sum / standard deviation intensity
+ * center of mass
+ * centroid
+ * mean / maximum distance to centroid (and extension ratio shape descriptor)
+ * mean / maximum distance to center of mass (and extension ratio shape descriptor)
+ * statistics of neighbors (See related [publication](https://www.frontiersin.org/articles/10.3389/fcomp.2021.774396/full))
+* code export
+ * python / Fiji-compatible jython
+ * python jupyter notebooks
+* pyclesperanto scripting
+ * cell segmentation
+ * cell counting
+ * cell differentiation
+ * tissue classification
+
+## Installation
+
+It is recommended to install the assistant using conda. If you have never used conda before, it is recommended to read
+[this blog post](https://biapol.github.io/blog/johannes_mueller/anaconda_getting_started/) first.
+
+```shell
+conda create --name cle_39 python=3.9 napari-pyclesperanto-assistant
+conda activate cle_39
+```
+
+Mac-users please also install this:
+
+ conda install -c conda-forge ocl_icd_wrapper_apple
+
+Linux users please also install this:
+
+ conda install -c conda-forge ocl-icd-system
+
+You can then start the napari-assistant using this command:
+
+```
+naparia
+```
+
+
+## Feedback and contributions welcome!
+clEsperanto is developed in the open because we believe in the open source community. See our [community guidelines](https://clij.github.io/clij2-docs/community_guidelines). Feel free to drop feedback as [github issue](https://github.com/clEsperanto/pyclesperanto_prototype/issues) or via [image.sc](https://image.sc)
+
+## Acknowledgements
+This project was supported by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy – EXC2068 - Cluster of Excellence "Physics of Life" of TU Dresden.
+This project has been made possible in part by grant number [2021-240341 (Napari plugin accelerator grant)](https://chanzuckerberg.com/science/programs-resources/imaging/napari/improving-image-processing/) from the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley Community Foundation.
+
+[Imprint](https://clesperanto.github.io/imprint)
+
+
+
+%prep
+%autosetup -n napari-pyclesperanto-assistant-0.22.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-napari-pyclesperanto-assistant -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.22.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..5d15026
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+b626d484e90aaae4e7180907ce986a2d napari_pyclesperanto_assistant-0.22.1.tar.gz