summaryrefslogtreecommitdiff
path: root/python-neptune-sklearn.spec
blob: a1f1e41090fa393f911f274a9e8934f08c70601b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
%global _empty_manifest_terminate_build 0
Name:		python-neptune-sklearn
Version:	2.1.0
Release:	1
Summary:	Neptune.ai scikit-learn integration library
License:	Apache-2.0
URL:		https://neptune.ai/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/eb/ce/8cd5c232fa15c62b6d15eee2560e046996c7031a4d433df900b96f3b14e3/neptune_sklearn-2.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-importlib-metadata
Requires:	python3-neptune
Requires:	python3-pre-commit
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-scikit-learn
Requires:	python3-scikit-plot
Requires:	python3-yellowbrick

%description
# Neptune + scikit-learn integration

Experiment tracking, model registry, data versioning, and live model monitoring for scikit-learn (sklearn) trained models.

## What will you get with this integration?

* Log, display, organize, and compare ML experiments in a single place
* Version, store, manage, and query trained models, and model building metadata
* Record and monitor model training, evaluation, or production runs live

## What will be logged to Neptune?

* classifier and regressor parameters,
* pickled model,
* test predictions,
* test predictions probabilities,
* test scores,
* classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
* KMeans cluster labels and clustering visualizations,
* metadata including git summary info,
* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)

![image](https://user-images.githubusercontent.com/97611089/160642485-afca99da-9f7b-4d80-b0be-810c9d5770e5.png)
*Confusion matrix logged to Neptune*

## Resources

* [Documentation](https://docs.neptune.ai/integrations/sklearn)
* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/sklearn/scripts/Neptune_Scikit_learn_classification.py)
* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/sklearn-integration/e/SKLEAR-95/all)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/sklearn/notebooks/Neptune_Scikit_learn.ipynb)

## Example

```
# On the command line:
pip install neptune-sklearn
```

```python
# In Python, prepare a fitted estimator
parameters = {
    "n_estimators": 70, "max_depth": 7, "min_samples_split": 3
}

estimator = ...
estimator.fit(X_train, y_train)

# Import Neptune and start a run
import neptune

run = neptune.init_run(
    project="common/sklearn-integration",
    api_token=neptune.ANONYMOUS_API_TOKEN,
)

# Log parameters and scores
run["parameters"] = parameters

y_pred = estimator.predict(X_test)

run["scores/max_error"] = max_error(y_test, y_pred)
run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
run["scores/r2_score"] = r2_score(y_test, y_pred)

# Stop the run
run.stop()
```

## Support

If you got stuck or simply want to talk to us, here are your options:

* Check our [FAQ page](https://docs.neptune.ai/getting_help)
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
* You can just shoot us an email at support@neptune.ai



%package -n python3-neptune-sklearn
Summary:	Neptune.ai scikit-learn integration library
Provides:	python-neptune-sklearn
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-neptune-sklearn
# Neptune + scikit-learn integration

Experiment tracking, model registry, data versioning, and live model monitoring for scikit-learn (sklearn) trained models.

## What will you get with this integration?

* Log, display, organize, and compare ML experiments in a single place
* Version, store, manage, and query trained models, and model building metadata
* Record and monitor model training, evaluation, or production runs live

## What will be logged to Neptune?

* classifier and regressor parameters,
* pickled model,
* test predictions,
* test predictions probabilities,
* test scores,
* classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
* KMeans cluster labels and clustering visualizations,
* metadata including git summary info,
* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)

![image](https://user-images.githubusercontent.com/97611089/160642485-afca99da-9f7b-4d80-b0be-810c9d5770e5.png)
*Confusion matrix logged to Neptune*

## Resources

* [Documentation](https://docs.neptune.ai/integrations/sklearn)
* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/sklearn/scripts/Neptune_Scikit_learn_classification.py)
* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/sklearn-integration/e/SKLEAR-95/all)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/sklearn/notebooks/Neptune_Scikit_learn.ipynb)

## Example

```
# On the command line:
pip install neptune-sklearn
```

```python
# In Python, prepare a fitted estimator
parameters = {
    "n_estimators": 70, "max_depth": 7, "min_samples_split": 3
}

estimator = ...
estimator.fit(X_train, y_train)

# Import Neptune and start a run
import neptune

run = neptune.init_run(
    project="common/sklearn-integration",
    api_token=neptune.ANONYMOUS_API_TOKEN,
)

# Log parameters and scores
run["parameters"] = parameters

y_pred = estimator.predict(X_test)

run["scores/max_error"] = max_error(y_test, y_pred)
run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
run["scores/r2_score"] = r2_score(y_test, y_pred)

# Stop the run
run.stop()
```

## Support

If you got stuck or simply want to talk to us, here are your options:

* Check our [FAQ page](https://docs.neptune.ai/getting_help)
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
* You can just shoot us an email at support@neptune.ai



%package help
Summary:	Development documents and examples for neptune-sklearn
Provides:	python3-neptune-sklearn-doc
%description help
# Neptune + scikit-learn integration

Experiment tracking, model registry, data versioning, and live model monitoring for scikit-learn (sklearn) trained models.

## What will you get with this integration?

* Log, display, organize, and compare ML experiments in a single place
* Version, store, manage, and query trained models, and model building metadata
* Record and monitor model training, evaluation, or production runs live

## What will be logged to Neptune?

* classifier and regressor parameters,
* pickled model,
* test predictions,
* test predictions probabilities,
* test scores,
* classifier and regressor visualizations, like confusion matrix, precision-recall chart, and feature importance chart,
* KMeans cluster labels and clustering visualizations,
* metadata including git summary info,
* [other metadata](https://docs.neptune.ai/logging/what_you_can_log)

![image](https://user-images.githubusercontent.com/97611089/160642485-afca99da-9f7b-4d80-b0be-810c9d5770e5.png)
*Confusion matrix logged to Neptune*

## Resources

* [Documentation](https://docs.neptune.ai/integrations/sklearn)
* [Code example on GitHub](https://github.com/neptune-ai/examples/blob/main/integrations-and-supported-tools/sklearn/scripts/Neptune_Scikit_learn_classification.py)
* [Runs logged in the Neptune app](https://app.neptune.ai/o/common/org/sklearn-integration/e/SKLEAR-95/all)
* [Run example in Google Colab](https://colab.research.google.com/github/neptune-ai/examples/blob/master/integrations-and-supported-tools/sklearn/notebooks/Neptune_Scikit_learn.ipynb)

## Example

```
# On the command line:
pip install neptune-sklearn
```

```python
# In Python, prepare a fitted estimator
parameters = {
    "n_estimators": 70, "max_depth": 7, "min_samples_split": 3
}

estimator = ...
estimator.fit(X_train, y_train)

# Import Neptune and start a run
import neptune

run = neptune.init_run(
    project="common/sklearn-integration",
    api_token=neptune.ANONYMOUS_API_TOKEN,
)

# Log parameters and scores
run["parameters"] = parameters

y_pred = estimator.predict(X_test)

run["scores/max_error"] = max_error(y_test, y_pred)
run["scores/mean_absolute_error"] = mean_absolute_error(y_test, y_pred)
run["scores/r2_score"] = r2_score(y_test, y_pred)

# Stop the run
run.stop()
```

## Support

If you got stuck or simply want to talk to us, here are your options:

* Check our [FAQ page](https://docs.neptune.ai/getting_help)
* You can submit bug reports, feature requests, or contributions directly to the repository.
* Chat! When in the Neptune application click on the blue message icon in the bottom-right corner and send a message. A real person will talk to you ASAP (typically very ASAP),
* You can just shoot us an email at support@neptune.ai



%prep
%autosetup -n neptune_sklearn-2.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-neptune-sklearn -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.0-1
- Package Spec generated