1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
%global _empty_manifest_terminate_build 0
Name: python-nessai
Version: 0.8.1
Release: 1
Summary: Nessai: Nested Sampling with Artificial Intelligence
License: MIT License
URL: https://github.com/mj-will/nessai
Source0: https://mirrors.aliyun.com/pypi/web/packages/9b/0d/ca46e471480ba7854ec929e8dbfb3d0724239c2ca46574c712ba866519a1/nessai-0.8.1.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-matplotlib
Requires: python3-seaborn
Requires: python3-scipy
Requires: python3-torch
Requires: python3-tqdm
Requires: python3-glasflow
Requires: python3-h5py
Requires: python3-pre-commit
Requires: python3-ray[default]
Requires: python3-corner
Requires: python3-sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-numpydoc
Requires: python3-sphinx-autoapi
Requires: python3-lalsuite
Requires: python3-bilby
Requires: python3-astropy
Requires: python3-nflows
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-pytest-timeout
Requires: python3-pytest-rerunfailures
Requires: python3-pytest-integration
%description
[](https://doi.org/10.5281/zenodo.4550693)
[](https://pypi.org/project/nessai/)
[](https://anaconda.org/conda-forge/nessai)
[](https://nessai.readthedocs.io/en/latest/?badge=latest)



[](https://codecov.io/gh/mj-will/nessai)
# nessai: Nested Sampling with Artificial Intelligence
``nessai`` (/ˈnɛsi/): Nested Sampling with Artificial Intelligence
``nessai`` is a nested sampling algorithm for Bayesian Inference that incorporates normalisings flows. It is designed for applications where the Bayesian likelihood is computationally expensive.
## Installation
``nessai`` can be installed using ``pip``:
```console
pip install nessai
```
or via ``conda``
```console
conda install -c conda-forge -c pytorch nessai
```
### PyTorch
By default the version of PyTorch will not necessarily match the drivers on your system, to install a different version with the correct CUDA support see the PyTorch homepage for instructions: https://pytorch.org/.
### Using ``bilby``
As of `bilby` version 1.1.0, ``nessai`` is now supported by default but it is still an optional requirement. See the [``bilby`` documentation](https://lscsoft.docs.ligo.org/bilby/index.html) for installation instructions for `bilby`
See the examples included with ``nessai`` for how to run ``nessai`` via ``bilby``.
## Documentation
Documentation is available at: [nessai.readthedocs.io](https://nessai.readthedocs.io/)
## Contributing
Please see the guidelines [here](https://github.com/mj-will/nessai/blob/master/CONTRIBUTING.md).
## Acknowledgements
The core nested sampling code, model design and code for computing the posterior in ``nessai`` was based on [`cpnest`](https://github.com/johnveitch/cpnest) with permission from the authors.
The normalising flows implemented in ``nessai`` are all either directly imported from [`nflows`](https://github.com/bayesiains/nflows/tree/master/nflows) or heavily based on it.
Other code snippets that draw on existing code reference the source in their corresponding doc-strings.
The authors also thank Christian Chapman-Bird, Laurence Datrier, Fergus Hayes, Jethro Linley and Simon Tait for their feedback and help finding bugs in ``nessai``.
## Citing
If you find ``nessai`` useful in your work please cite the DOI for this code and our paper:
```bibtex
@software{nessai,
author = {Michael J. Williams},
title = {nessai: Nested Sampling with Artificial Intelligence},
month = feb,
year = 2021,
publisher = {Zenodo},
version = {latest},
doi = {10.5281/zenodo.4550693},
url = {https://doi.org/10.5281/zenodo.4550693}
}
@article{PhysRevD.103.103006,
title = {Nested sampling with normalizing flows for gravitational-wave inference},
author = {Williams, Michael J. and Veitch, John and Messenger, Chris},
journal = {Phys. Rev. D},
volume = {103},
issue = {10},
pages = {103006},
numpages = {19},
year = {2021},
month = {May},
publisher = {American Physical Society},
doi = {10.1103/PhysRevD.103.103006},
url = {https://link.aps.org/doi/10.1103/PhysRevD.103.103006}
}
```
%package -n python3-nessai
Summary: Nessai: Nested Sampling with Artificial Intelligence
Provides: python-nessai
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-nessai
[](https://doi.org/10.5281/zenodo.4550693)
[](https://pypi.org/project/nessai/)
[](https://anaconda.org/conda-forge/nessai)
[](https://nessai.readthedocs.io/en/latest/?badge=latest)



[](https://codecov.io/gh/mj-will/nessai)
# nessai: Nested Sampling with Artificial Intelligence
``nessai`` (/ˈnɛsi/): Nested Sampling with Artificial Intelligence
``nessai`` is a nested sampling algorithm for Bayesian Inference that incorporates normalisings flows. It is designed for applications where the Bayesian likelihood is computationally expensive.
## Installation
``nessai`` can be installed using ``pip``:
```console
pip install nessai
```
or via ``conda``
```console
conda install -c conda-forge -c pytorch nessai
```
### PyTorch
By default the version of PyTorch will not necessarily match the drivers on your system, to install a different version with the correct CUDA support see the PyTorch homepage for instructions: https://pytorch.org/.
### Using ``bilby``
As of `bilby` version 1.1.0, ``nessai`` is now supported by default but it is still an optional requirement. See the [``bilby`` documentation](https://lscsoft.docs.ligo.org/bilby/index.html) for installation instructions for `bilby`
See the examples included with ``nessai`` for how to run ``nessai`` via ``bilby``.
## Documentation
Documentation is available at: [nessai.readthedocs.io](https://nessai.readthedocs.io/)
## Contributing
Please see the guidelines [here](https://github.com/mj-will/nessai/blob/master/CONTRIBUTING.md).
## Acknowledgements
The core nested sampling code, model design and code for computing the posterior in ``nessai`` was based on [`cpnest`](https://github.com/johnveitch/cpnest) with permission from the authors.
The normalising flows implemented in ``nessai`` are all either directly imported from [`nflows`](https://github.com/bayesiains/nflows/tree/master/nflows) or heavily based on it.
Other code snippets that draw on existing code reference the source in their corresponding doc-strings.
The authors also thank Christian Chapman-Bird, Laurence Datrier, Fergus Hayes, Jethro Linley and Simon Tait for their feedback and help finding bugs in ``nessai``.
## Citing
If you find ``nessai`` useful in your work please cite the DOI for this code and our paper:
```bibtex
@software{nessai,
author = {Michael J. Williams},
title = {nessai: Nested Sampling with Artificial Intelligence},
month = feb,
year = 2021,
publisher = {Zenodo},
version = {latest},
doi = {10.5281/zenodo.4550693},
url = {https://doi.org/10.5281/zenodo.4550693}
}
@article{PhysRevD.103.103006,
title = {Nested sampling with normalizing flows for gravitational-wave inference},
author = {Williams, Michael J. and Veitch, John and Messenger, Chris},
journal = {Phys. Rev. D},
volume = {103},
issue = {10},
pages = {103006},
numpages = {19},
year = {2021},
month = {May},
publisher = {American Physical Society},
doi = {10.1103/PhysRevD.103.103006},
url = {https://link.aps.org/doi/10.1103/PhysRevD.103.103006}
}
```
%package help
Summary: Development documents and examples for nessai
Provides: python3-nessai-doc
%description help
[](https://doi.org/10.5281/zenodo.4550693)
[](https://pypi.org/project/nessai/)
[](https://anaconda.org/conda-forge/nessai)
[](https://nessai.readthedocs.io/en/latest/?badge=latest)



[](https://codecov.io/gh/mj-will/nessai)
# nessai: Nested Sampling with Artificial Intelligence
``nessai`` (/ˈnɛsi/): Nested Sampling with Artificial Intelligence
``nessai`` is a nested sampling algorithm for Bayesian Inference that incorporates normalisings flows. It is designed for applications where the Bayesian likelihood is computationally expensive.
## Installation
``nessai`` can be installed using ``pip``:
```console
pip install nessai
```
or via ``conda``
```console
conda install -c conda-forge -c pytorch nessai
```
### PyTorch
By default the version of PyTorch will not necessarily match the drivers on your system, to install a different version with the correct CUDA support see the PyTorch homepage for instructions: https://pytorch.org/.
### Using ``bilby``
As of `bilby` version 1.1.0, ``nessai`` is now supported by default but it is still an optional requirement. See the [``bilby`` documentation](https://lscsoft.docs.ligo.org/bilby/index.html) for installation instructions for `bilby`
See the examples included with ``nessai`` for how to run ``nessai`` via ``bilby``.
## Documentation
Documentation is available at: [nessai.readthedocs.io](https://nessai.readthedocs.io/)
## Contributing
Please see the guidelines [here](https://github.com/mj-will/nessai/blob/master/CONTRIBUTING.md).
## Acknowledgements
The core nested sampling code, model design and code for computing the posterior in ``nessai`` was based on [`cpnest`](https://github.com/johnveitch/cpnest) with permission from the authors.
The normalising flows implemented in ``nessai`` are all either directly imported from [`nflows`](https://github.com/bayesiains/nflows/tree/master/nflows) or heavily based on it.
Other code snippets that draw on existing code reference the source in their corresponding doc-strings.
The authors also thank Christian Chapman-Bird, Laurence Datrier, Fergus Hayes, Jethro Linley and Simon Tait for their feedback and help finding bugs in ``nessai``.
## Citing
If you find ``nessai`` useful in your work please cite the DOI for this code and our paper:
```bibtex
@software{nessai,
author = {Michael J. Williams},
title = {nessai: Nested Sampling with Artificial Intelligence},
month = feb,
year = 2021,
publisher = {Zenodo},
version = {latest},
doi = {10.5281/zenodo.4550693},
url = {https://doi.org/10.5281/zenodo.4550693}
}
@article{PhysRevD.103.103006,
title = {Nested sampling with normalizing flows for gravitational-wave inference},
author = {Williams, Michael J. and Veitch, John and Messenger, Chris},
journal = {Phys. Rev. D},
volume = {103},
issue = {10},
pages = {103006},
numpages = {19},
year = {2021},
month = {May},
publisher = {American Physical Society},
doi = {10.1103/PhysRevD.103.103006},
url = {https://link.aps.org/doi/10.1103/PhysRevD.103.103006}
}
```
%prep
%autosetup -n nessai-0.8.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-nessai -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.8.1-1
- Package Spec generated
|