summaryrefslogtreecommitdiff
path: root/python-njet.spec
blob: f4d72e82920add7a59ffa0ad573f55a62cfa3fa2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
%global _empty_manifest_terminate_build 0
Name:		python-njet
Version:	0.5.2
Release:	1
Summary:	Lightweight automatic differentiation package for higher-order differentiation.
License:	GPL-3.0-or-later
URL:		https://pypi.org/project/njet/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/82/66/142e17db802d4d66d4ec67461d96a41c4bfdfc81721505d51acd32ea2f73/njet-0.5.2.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-sympy
Requires:	python3-more-itertools
Requires:	python3-tqdm
Requires:	python3-ipykernel

%description
[![Documentation Status](https://readthedocs.org/projects/njet/badge/?version=latest)](https://njet.readthedocs.io/en/latest/?badge=latest)

# njet: Lightweight automatic differentiation

A lightweight AD package, using forward-mode automatic differentiation, in order to determine the
higher-order derivatives of a given function in several variables.

## Features

- Higher-order (forward-mode) automatic differentiation in several variables.
- Support for NumPy, SymPy and mpmath.
- Differentiation of expressions containing nested higher-order derivatives.
- Complex differentiation (Wirtinger calculus) possible.
- Faa di Bruno's formula for vector-valued functions implemented.
- Lightweight and easy to use.

## Installation

Install this module with pip

```sh
pip install njet
```

## Quickstart

An example function we want to differentiate
```python
from njet.functions import exp
f = lambda x, y, z: exp(-0.23*x**2 - 0.33*x*y - 0.11*z**2)
```

Generate a class to handle the derivatives of the given function (in this example up to order 3)
```python
from njet import derive
df = derive(f, order=3)
```

Evaluate the derivatives at a specific point
```python
df(0.4, 2.1, 1.73)

{(0, 0, 0): 0.5255977986928584,
 (0, 0, 1): -0.2000425221825019,
 (1, 0, 0): -0.46094926945363685,
 (0, 1, 0): -0.06937890942745731,
 (0, 0, 2): -0.03949533176976862,
 (0, 2, 0): 0.009158016044424365,
 (1, 0, 1): 0.1754372919540542,
 (0, 1, 1): 0.026405612928090252,
 (2, 0, 0): 0.1624775219121247,
 (1, 1, 0): -0.11260197000076322,
 (2, 1, 0): 0.2827794849469999,
 (1, 1, 1): 0.04285630978229049,
 (0, 1, 2): 0.005213383793609458,
 (0, 2, 1): -0.0034855409065079135,
 (0, 3, 0): -0.0012088581178640162,
 (3, 0, 0): 0.2815805411804125,
 (2, 0, 1): -0.061838944839754675,
 (0, 0, 3): 0.10305063303187477,
 (1, 2, 0): 0.03775850015116166,
 (1, 0, 2): 0.034637405962087094}
```
The indices here correspond to the powers of the variables x, y, z
in the multivariate Taylor expansion. They can be translated to
the tensor indices of the corresponding multilinear map using a
built-in routine. Example:

Obtain the gradient and the Hessian
```python
df.grad()

{(2,): -0.2000425221825019,
 (0,): -0.46094926945363685,
 (1,): -0.06937890942745731}
```

```python
df.hess()

{(2, 2): -0.03949533176976862,
 (1, 1): 0.009158016044424365,
 (0, 2): 0.1754372919540542,
 (1, 2): 0.026405612928090252,
 (0, 0): 0.1624775219121247,
 (0, 1): -0.11260197000076322}
```

## Further reading

https://njet.readthedocs.io/en/latest/index.html

## License

njet: Automatic Differentiation Library

Copyright (C) 2021, 2022, 2023 by Malte Titze

njet is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

njet is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with njet. If not, see <https://www.gnu.org/licenses/>.


%package -n python3-njet
Summary:	Lightweight automatic differentiation package for higher-order differentiation.
Provides:	python-njet
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-njet
[![Documentation Status](https://readthedocs.org/projects/njet/badge/?version=latest)](https://njet.readthedocs.io/en/latest/?badge=latest)

# njet: Lightweight automatic differentiation

A lightweight AD package, using forward-mode automatic differentiation, in order to determine the
higher-order derivatives of a given function in several variables.

## Features

- Higher-order (forward-mode) automatic differentiation in several variables.
- Support for NumPy, SymPy and mpmath.
- Differentiation of expressions containing nested higher-order derivatives.
- Complex differentiation (Wirtinger calculus) possible.
- Faa di Bruno's formula for vector-valued functions implemented.
- Lightweight and easy to use.

## Installation

Install this module with pip

```sh
pip install njet
```

## Quickstart

An example function we want to differentiate
```python
from njet.functions import exp
f = lambda x, y, z: exp(-0.23*x**2 - 0.33*x*y - 0.11*z**2)
```

Generate a class to handle the derivatives of the given function (in this example up to order 3)
```python
from njet import derive
df = derive(f, order=3)
```

Evaluate the derivatives at a specific point
```python
df(0.4, 2.1, 1.73)

{(0, 0, 0): 0.5255977986928584,
 (0, 0, 1): -0.2000425221825019,
 (1, 0, 0): -0.46094926945363685,
 (0, 1, 0): -0.06937890942745731,
 (0, 0, 2): -0.03949533176976862,
 (0, 2, 0): 0.009158016044424365,
 (1, 0, 1): 0.1754372919540542,
 (0, 1, 1): 0.026405612928090252,
 (2, 0, 0): 0.1624775219121247,
 (1, 1, 0): -0.11260197000076322,
 (2, 1, 0): 0.2827794849469999,
 (1, 1, 1): 0.04285630978229049,
 (0, 1, 2): 0.005213383793609458,
 (0, 2, 1): -0.0034855409065079135,
 (0, 3, 0): -0.0012088581178640162,
 (3, 0, 0): 0.2815805411804125,
 (2, 0, 1): -0.061838944839754675,
 (0, 0, 3): 0.10305063303187477,
 (1, 2, 0): 0.03775850015116166,
 (1, 0, 2): 0.034637405962087094}
```
The indices here correspond to the powers of the variables x, y, z
in the multivariate Taylor expansion. They can be translated to
the tensor indices of the corresponding multilinear map using a
built-in routine. Example:

Obtain the gradient and the Hessian
```python
df.grad()

{(2,): -0.2000425221825019,
 (0,): -0.46094926945363685,
 (1,): -0.06937890942745731}
```

```python
df.hess()

{(2, 2): -0.03949533176976862,
 (1, 1): 0.009158016044424365,
 (0, 2): 0.1754372919540542,
 (1, 2): 0.026405612928090252,
 (0, 0): 0.1624775219121247,
 (0, 1): -0.11260197000076322}
```

## Further reading

https://njet.readthedocs.io/en/latest/index.html

## License

njet: Automatic Differentiation Library

Copyright (C) 2021, 2022, 2023 by Malte Titze

njet is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

njet is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with njet. If not, see <https://www.gnu.org/licenses/>.


%package help
Summary:	Development documents and examples for njet
Provides:	python3-njet-doc
%description help
[![Documentation Status](https://readthedocs.org/projects/njet/badge/?version=latest)](https://njet.readthedocs.io/en/latest/?badge=latest)

# njet: Lightweight automatic differentiation

A lightweight AD package, using forward-mode automatic differentiation, in order to determine the
higher-order derivatives of a given function in several variables.

## Features

- Higher-order (forward-mode) automatic differentiation in several variables.
- Support for NumPy, SymPy and mpmath.
- Differentiation of expressions containing nested higher-order derivatives.
- Complex differentiation (Wirtinger calculus) possible.
- Faa di Bruno's formula for vector-valued functions implemented.
- Lightweight and easy to use.

## Installation

Install this module with pip

```sh
pip install njet
```

## Quickstart

An example function we want to differentiate
```python
from njet.functions import exp
f = lambda x, y, z: exp(-0.23*x**2 - 0.33*x*y - 0.11*z**2)
```

Generate a class to handle the derivatives of the given function (in this example up to order 3)
```python
from njet import derive
df = derive(f, order=3)
```

Evaluate the derivatives at a specific point
```python
df(0.4, 2.1, 1.73)

{(0, 0, 0): 0.5255977986928584,
 (0, 0, 1): -0.2000425221825019,
 (1, 0, 0): -0.46094926945363685,
 (0, 1, 0): -0.06937890942745731,
 (0, 0, 2): -0.03949533176976862,
 (0, 2, 0): 0.009158016044424365,
 (1, 0, 1): 0.1754372919540542,
 (0, 1, 1): 0.026405612928090252,
 (2, 0, 0): 0.1624775219121247,
 (1, 1, 0): -0.11260197000076322,
 (2, 1, 0): 0.2827794849469999,
 (1, 1, 1): 0.04285630978229049,
 (0, 1, 2): 0.005213383793609458,
 (0, 2, 1): -0.0034855409065079135,
 (0, 3, 0): -0.0012088581178640162,
 (3, 0, 0): 0.2815805411804125,
 (2, 0, 1): -0.061838944839754675,
 (0, 0, 3): 0.10305063303187477,
 (1, 2, 0): 0.03775850015116166,
 (1, 0, 2): 0.034637405962087094}
```
The indices here correspond to the powers of the variables x, y, z
in the multivariate Taylor expansion. They can be translated to
the tensor indices of the corresponding multilinear map using a
built-in routine. Example:

Obtain the gradient and the Hessian
```python
df.grad()

{(2,): -0.2000425221825019,
 (0,): -0.46094926945363685,
 (1,): -0.06937890942745731}
```

```python
df.hess()

{(2, 2): -0.03949533176976862,
 (1, 1): 0.009158016044424365,
 (0, 2): 0.1754372919540542,
 (1, 2): 0.026405612928090252,
 (0, 0): 0.1624775219121247,
 (0, 1): -0.11260197000076322}
```

## Further reading

https://njet.readthedocs.io/en/latest/index.html

## License

njet: Automatic Differentiation Library

Copyright (C) 2021, 2022, 2023 by Malte Titze

njet is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

njet is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with njet. If not, see <https://www.gnu.org/licenses/>.


%prep
%autosetup -n njet-0.5.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-njet -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.2-1
- Package Spec generated