summaryrefslogtreecommitdiff
path: root/python-nlpyport.spec
blob: 5f7aa3c4172c95d3c864a5493c9d6bb9e18e11c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
%global _empty_manifest_terminate_build 0
Name:		python-NLPyPort
Version:	2.2.5
Release:	1
Summary:	Python NLP for Portuguese
License:	cc0-1.0
URL:		https://github.com/jdportugal/NLPyPort
Source0:	https://mirrors.aliyun.com/pypi/web/packages/b7/cb/27c653a479f649313c3d6da4dd88bbf6e92ed9f71f6cf64aa8cc177426c4/NLPyPort-2.2.5.tar.gz
BuildArch:	noarch


%description
# NLPyPort


The NLPy_Port is a pipeline assembled from the NLTK pipeline, adding and changing its elements for better processing the portuguese that were previouslly created for the NLPPort pipeline.
It suports at the moment the taks of Tokenization, PoS Tagging , Lemmatization and Named Entity Recognition


# Instalation
Installing NLPyPort should be as simple as installing the requirements or installing the module via pip (pip install NLPyPort). However, some other configurations may be necessary. 

If your NLTK version is above 3.4.5, install the version 3.4.5 by running:
```bash
>>> pip install nltk==3.4.5
```

If you installed NLTK and do not have downloaded the "Floresta" corpus, run the following commands:
```bash
>>> import nltk
>>> nltk.download('floresta')
```



# Usage

In order to simplify the usage of the NLPyPort pipeline, some structural changes were made. The “exemplo.py” file shows exemples os several use cases.

## How to use the pipeline

Depending on the planed usage, the pipeline may be called in three different ways:

### 1  - Default 
```python
text = new_full_pipe( your_input_file )
```


### 2 - Optional arguments
```python
text = new_full_pipe( your_input_file , options = options )
```


### 3 - Optional arguments and pre-load pipeline
```python
config_list = load_congif_to_list()         # Pre-load the pipeline
text=new_full_pipe( your_input_file , options = options , config_list = config_list)
```


## Available options

"tokenizer" : True   -> Perform Tokenization

"pos_tagger" : True -> Perform Pos Tagging

"lemmatizer" : True -> Perform Lemmatization

"entity_recognition" : True -> Perform NER

"np_chunking" : True -> Perform NP Chunking

"pre_load" : False -> Preload the pipeline, needs the additional argument “config_list”

"string_or_array" : True -> Set input as being an array or a string


## Returned text

In case of success, the pipeline will return an object of the “Text” class. The properties of this are as follow:
    text.tokens
    text.pos_tags
    text.lemas
    text.entities
    text.np_tags

Additionally, there is a method to return the pipeline in the CoNNL Format:
    text.print_conll()

To separate lines , at the end of each line the additional token EOS is added.


# Credits


Tokenizer and Lemmatizer resource files - Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "NLPPort: A Pipeline for Portuguese NLP (Short Paper)." 7th Symposium on Languages, Applications and Technologies (SLATE 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Lemmatizer design -  Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "LemPORT: a high-accuracy cross-platform lemmatizer for portuguese." 3rd Symposium on Languages, Applications and Technologies. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

PoS trainer (adapted from) - https://github.com/fmaruki/Nltk-Tagger-Portuguese

Named Entity Recognition  
    CRF suite - Naoaki Okazaki http://www.chokkan.org/software/crfsuite/
    sklearn-crfsuite wrapper - https://github.com/TeamHG-Memex/sklearn-crfsuite

Corpus
Corpus for PoS tagging training
    MacMorpho - http://nilc.icmc.usp.br/macmorpho/ 
    Floresta Sintá(c)tica - https://www.linguateca.pt/Floresta/corpus.html
    
    

# Citations

To cite and give credits to the pipeline please use the following BibText reference:

@inproceedings{ferreira_etal:slate2019,
    Author = {João Ferreira and Hugo {Gonçalo~Oliveira} and Ricardo Rodrigues},
    Booktitle = {Symposium on Languages, Applications and Technologies (SLATE 2019)},
    Month = {June},
    Note = {In press},
    Title = {Improving {NLTK} for Processing {P}ortuguese},
    Year = {2019}}

%package -n python3-NLPyPort
Summary:	Python NLP for Portuguese
Provides:	python-NLPyPort
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-NLPyPort
# NLPyPort


The NLPy_Port is a pipeline assembled from the NLTK pipeline, adding and changing its elements for better processing the portuguese that were previouslly created for the NLPPort pipeline.
It suports at the moment the taks of Tokenization, PoS Tagging , Lemmatization and Named Entity Recognition


# Instalation
Installing NLPyPort should be as simple as installing the requirements or installing the module via pip (pip install NLPyPort). However, some other configurations may be necessary. 

If your NLTK version is above 3.4.5, install the version 3.4.5 by running:
```bash
>>> pip install nltk==3.4.5
```

If you installed NLTK and do not have downloaded the "Floresta" corpus, run the following commands:
```bash
>>> import nltk
>>> nltk.download('floresta')
```



# Usage

In order to simplify the usage of the NLPyPort pipeline, some structural changes were made. The “exemplo.py” file shows exemples os several use cases.

## How to use the pipeline

Depending on the planed usage, the pipeline may be called in three different ways:

### 1  - Default 
```python
text = new_full_pipe( your_input_file )
```


### 2 - Optional arguments
```python
text = new_full_pipe( your_input_file , options = options )
```


### 3 - Optional arguments and pre-load pipeline
```python
config_list = load_congif_to_list()         # Pre-load the pipeline
text=new_full_pipe( your_input_file , options = options , config_list = config_list)
```


## Available options

"tokenizer" : True   -> Perform Tokenization

"pos_tagger" : True -> Perform Pos Tagging

"lemmatizer" : True -> Perform Lemmatization

"entity_recognition" : True -> Perform NER

"np_chunking" : True -> Perform NP Chunking

"pre_load" : False -> Preload the pipeline, needs the additional argument “config_list”

"string_or_array" : True -> Set input as being an array or a string


## Returned text

In case of success, the pipeline will return an object of the “Text” class. The properties of this are as follow:
    text.tokens
    text.pos_tags
    text.lemas
    text.entities
    text.np_tags

Additionally, there is a method to return the pipeline in the CoNNL Format:
    text.print_conll()

To separate lines , at the end of each line the additional token EOS is added.


# Credits


Tokenizer and Lemmatizer resource files - Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "NLPPort: A Pipeline for Portuguese NLP (Short Paper)." 7th Symposium on Languages, Applications and Technologies (SLATE 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Lemmatizer design -  Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "LemPORT: a high-accuracy cross-platform lemmatizer for portuguese." 3rd Symposium on Languages, Applications and Technologies. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

PoS trainer (adapted from) - https://github.com/fmaruki/Nltk-Tagger-Portuguese

Named Entity Recognition  
    CRF suite - Naoaki Okazaki http://www.chokkan.org/software/crfsuite/
    sklearn-crfsuite wrapper - https://github.com/TeamHG-Memex/sklearn-crfsuite

Corpus
Corpus for PoS tagging training
    MacMorpho - http://nilc.icmc.usp.br/macmorpho/ 
    Floresta Sintá(c)tica - https://www.linguateca.pt/Floresta/corpus.html
    
    

# Citations

To cite and give credits to the pipeline please use the following BibText reference:

@inproceedings{ferreira_etal:slate2019,
    Author = {João Ferreira and Hugo {Gonçalo~Oliveira} and Ricardo Rodrigues},
    Booktitle = {Symposium on Languages, Applications and Technologies (SLATE 2019)},
    Month = {June},
    Note = {In press},
    Title = {Improving {NLTK} for Processing {P}ortuguese},
    Year = {2019}}

%package help
Summary:	Development documents and examples for NLPyPort
Provides:	python3-NLPyPort-doc
%description help
# NLPyPort


The NLPy_Port is a pipeline assembled from the NLTK pipeline, adding and changing its elements for better processing the portuguese that were previouslly created for the NLPPort pipeline.
It suports at the moment the taks of Tokenization, PoS Tagging , Lemmatization and Named Entity Recognition


# Instalation
Installing NLPyPort should be as simple as installing the requirements or installing the module via pip (pip install NLPyPort). However, some other configurations may be necessary. 

If your NLTK version is above 3.4.5, install the version 3.4.5 by running:
```bash
>>> pip install nltk==3.4.5
```

If you installed NLTK and do not have downloaded the "Floresta" corpus, run the following commands:
```bash
>>> import nltk
>>> nltk.download('floresta')
```



# Usage

In order to simplify the usage of the NLPyPort pipeline, some structural changes were made. The “exemplo.py” file shows exemples os several use cases.

## How to use the pipeline

Depending on the planed usage, the pipeline may be called in three different ways:

### 1  - Default 
```python
text = new_full_pipe( your_input_file )
```


### 2 - Optional arguments
```python
text = new_full_pipe( your_input_file , options = options )
```


### 3 - Optional arguments and pre-load pipeline
```python
config_list = load_congif_to_list()         # Pre-load the pipeline
text=new_full_pipe( your_input_file , options = options , config_list = config_list)
```


## Available options

"tokenizer" : True   -> Perform Tokenization

"pos_tagger" : True -> Perform Pos Tagging

"lemmatizer" : True -> Perform Lemmatization

"entity_recognition" : True -> Perform NER

"np_chunking" : True -> Perform NP Chunking

"pre_load" : False -> Preload the pipeline, needs the additional argument “config_list”

"string_or_array" : True -> Set input as being an array or a string


## Returned text

In case of success, the pipeline will return an object of the “Text” class. The properties of this are as follow:
    text.tokens
    text.pos_tags
    text.lemas
    text.entities
    text.np_tags

Additionally, there is a method to return the pipeline in the CoNNL Format:
    text.print_conll()

To separate lines , at the end of each line the additional token EOS is added.


# Credits


Tokenizer and Lemmatizer resource files - Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "NLPPort: A Pipeline for Portuguese NLP (Short Paper)." 7th Symposium on Languages, Applications and Technologies (SLATE 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Lemmatizer design -  Rodrigues, Ricardo, Hugo Gonçalo Oliveira, and Paulo Gomes. "LemPORT: a high-accuracy cross-platform lemmatizer for portuguese." 3rd Symposium on Languages, Applications and Technologies. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

PoS trainer (adapted from) - https://github.com/fmaruki/Nltk-Tagger-Portuguese

Named Entity Recognition  
    CRF suite - Naoaki Okazaki http://www.chokkan.org/software/crfsuite/
    sklearn-crfsuite wrapper - https://github.com/TeamHG-Memex/sklearn-crfsuite

Corpus
Corpus for PoS tagging training
    MacMorpho - http://nilc.icmc.usp.br/macmorpho/ 
    Floresta Sintá(c)tica - https://www.linguateca.pt/Floresta/corpus.html
    
    

# Citations

To cite and give credits to the pipeline please use the following BibText reference:

@inproceedings{ferreira_etal:slate2019,
    Author = {João Ferreira and Hugo {Gonçalo~Oliveira} and Ricardo Rodrigues},
    Booktitle = {Symposium on Languages, Applications and Technologies (SLATE 2019)},
    Month = {June},
    Note = {In press},
    Title = {Improving {NLTK} for Processing {P}ortuguese},
    Year = {2019}}

%prep
%autosetup -n NLPyPort-2.2.5

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-NLPyPort -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 2.2.5-1
- Package Spec generated