summaryrefslogtreecommitdiff
path: root/python-nudenet.spec
blob: 6bd53bb8615602d7d9b4e4306cac753dcd8decf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
%global _empty_manifest_terminate_build 0
Name:		python-NudeNet
Version:	2.0.9
Release:	1
Summary:	An ensemble of Neural Nets for Nudity Detection and Censoring
License:	GPLv3
URL:		https://github.com/bedapudi6788/NudeNet
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d4/dc/efe7618feb71cc833ce3e208f0acde41c3b883815ebe382db5b9f0d7dee7/NudeNet-2.0.9.tar.gz
BuildArch:	noarch

Requires:	python3-pillow
Requires:	python3-opencv-python-headless
Requires:	python3-pydload
Requires:	python3-scikit-image
Requires:	python3-onnxruntime

%description

# NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

[![DOI](https://zenodo.org/badge/173154449.svg)](https://zenodo.org/badge/latestdoi/173154449)

Uncensored version of the following image can be found at https://i.imgur.com/rga6845.jpg (NSFW)

![](https://i.imgur.com/0KPJbl9.jpg)

**Classifier classes:**
|class name   |  Description    |
|--------|:--------------:
|safe | Image/Video is not sexually explicit     |
|unsafe | Image/Video is sexually explicit|

**Default Detector classes:**
|class name   |  Description                    |
|--------|:-------------------------------------:
|EXPOSED_ANUS | Exposed Anus; Any gender |
|EXPOSED_ARMPITS | Exposed Armpits; Any gender |
|COVERED_BELLY | Provocative, but covered Belly; Any gender |
|EXPOSED_BELLY | Exposed Belly; Any gender |
|COVERED_BUTTOCKS | Provocative, but covered Buttocks; Any gender |
|EXPOSED_BUTTOCKS | Exposed Buttocks; Any gender |
|FACE_F | Female Face|
|FACE_M | Male Face|
|COVERED_FEET |Covered Feet; Any gender |
|EXPOSED_FEET | Exposed Feet; Any gender|
|COVERED_BREAST_F | Provocative, but covered Breast; Female |
|EXPOSED_BREAST_F | Exposed Breast; Female |
|COVERED_GENITALIA_F |Provocative, but covered Genitalia; Female|
|EXPOSED_GENITALIA_F |Exposed Genitalia; Female |
|EXPOSED_BREAST_M |Exposed Breast; Male |
|EXPOSED_GENITALIA_M |Exposed Genitalia; Male |

**Base Detector classes:**
|class name   |  Description    |
|--------|:--------------:
|EXPOSED_BELLY | Exposed Belly; Any gender |
|EXPOSED_BUTTOCKS | Exposed Buttocks; Any gender |
|EXPOSED_BREAST_F | Exposed Breast; Female |
|EXPOSED_GENITALIA_F |Exposed Genitalia; Female |
|EXPOSED_GENITALIA_M |Exposed Genitalia; Male |
|EXPOSED_BREAST_M |Exposed Breast; Male |

# As self-hostable API service
```bash
# Classifier
docker run -it -p8080:8080 notaitech/nudenet:classifier

# Detector
docker run -it -p8080:8080 notaitech/nudenet:detector

# See fastDeploy-file_client.py for running predictions via fastDeploy's REST endpoints 
wget https://raw.githubusercontent.com/notAI-tech/fastDeploy/master/cli/fastDeploy-file_client.py
# Single input
python fastDeploy-file_client.py --file PATH_TO_YOUR_IMAGE

# Client side batching
python fastDeploy-file_client.py --dir PATH_TO_FOLDER --ext jpg
```

**Note: golang example https://github.com/notAI-tech/NudeNet/issues/63#issuecomment-729555360**, thanks to [Preetham Kamidi](https://github.com/preetham)


# As Python module
**Installation**:
```bash
pip install --upgrade nudenet
```

**Classifier Usage**:
```python
# Import module
from nudenet import NudeClassifier

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier = NudeClassifier()

# Classify single image
classifier.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier.classify(['path_to_image_1', 'path_to_image_2'], batch_size=BATCH_SIZE)
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

# Classify video
# batch_size is optional; defaults to 4
classifier.classify_video('path_to_video', batch_size=BATCH_SIZE)
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'safe': PROBABILITY, 'unsafe': PROBABILITY}, ....}}

```

Thanks to [Johnny Urosevic](https://github.com/JohnnyUrosevic), NudeClassifier is also available in tflite.

**TFLite Classifier Usage**:
```python
# Import module
from nudenet import NudeClassifierLite

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier_lite = NudeClassifierLite()

# Classify single image
classifier_lite.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier_lite.classify(['path_to_image_1', 'path_to_image_2'])
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

```

Using the tflite classifier from flutter: **https://github.com/ndaysinaiK/nude-test** 

**Detector Usage**:
```python
# Import module
from nudenet import NudeDetector

# initialize detector (downloads the checkpoint file automatically the first time)
detector = NudeDetector() # detector = NudeDetector('base') for the "base" version of detector.

# Detect single image
detector.detect('path_to_image')
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect('path_to_image', mode='fast')
# Returns [{'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...]

# Detect video
# batch_size is optional; defaults to 2
# show_progress is optional; defaults to True
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN)
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN, mode='fast')
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...], ....}}



```

# Notes:
- detect_video and classify_video first identify the "unique" frames in a video and run predictions on them for significant performance improvement.
- V1 of NudeDetector (available in master branch of this repo) was trained on 12000 images labelled by the good folks at cti-community.
- V2 (current version) of NudeDetector is trained on 160,000 entirely auto-labelled (using classification heat maps and various other hybrid techniques) images. 
- The entire data for the classifier is available at https://archive.org/details/NudeNet_classifier_dataset_v1
- A part of the auto-labelled data (Images are from the classifier dataset above) used to train the base Detector is available at https://github.com/notAI-tech/NudeNet/releases/download/v0/DETECTOR_AUTO_GENERATED_DATA.zip




%package -n python3-NudeNet
Summary:	An ensemble of Neural Nets for Nudity Detection and Censoring
Provides:	python-NudeNet
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-NudeNet

# NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

[![DOI](https://zenodo.org/badge/173154449.svg)](https://zenodo.org/badge/latestdoi/173154449)

Uncensored version of the following image can be found at https://i.imgur.com/rga6845.jpg (NSFW)

![](https://i.imgur.com/0KPJbl9.jpg)

**Classifier classes:**
|class name   |  Description    |
|--------|:--------------:
|safe | Image/Video is not sexually explicit     |
|unsafe | Image/Video is sexually explicit|

**Default Detector classes:**
|class name   |  Description                    |
|--------|:-------------------------------------:
|EXPOSED_ANUS | Exposed Anus; Any gender |
|EXPOSED_ARMPITS | Exposed Armpits; Any gender |
|COVERED_BELLY | Provocative, but covered Belly; Any gender |
|EXPOSED_BELLY | Exposed Belly; Any gender |
|COVERED_BUTTOCKS | Provocative, but covered Buttocks; Any gender |
|EXPOSED_BUTTOCKS | Exposed Buttocks; Any gender |
|FACE_F | Female Face|
|FACE_M | Male Face|
|COVERED_FEET |Covered Feet; Any gender |
|EXPOSED_FEET | Exposed Feet; Any gender|
|COVERED_BREAST_F | Provocative, but covered Breast; Female |
|EXPOSED_BREAST_F | Exposed Breast; Female |
|COVERED_GENITALIA_F |Provocative, but covered Genitalia; Female|
|EXPOSED_GENITALIA_F |Exposed Genitalia; Female |
|EXPOSED_BREAST_M |Exposed Breast; Male |
|EXPOSED_GENITALIA_M |Exposed Genitalia; Male |

**Base Detector classes:**
|class name   |  Description    |
|--------|:--------------:
|EXPOSED_BELLY | Exposed Belly; Any gender |
|EXPOSED_BUTTOCKS | Exposed Buttocks; Any gender |
|EXPOSED_BREAST_F | Exposed Breast; Female |
|EXPOSED_GENITALIA_F |Exposed Genitalia; Female |
|EXPOSED_GENITALIA_M |Exposed Genitalia; Male |
|EXPOSED_BREAST_M |Exposed Breast; Male |

# As self-hostable API service
```bash
# Classifier
docker run -it -p8080:8080 notaitech/nudenet:classifier

# Detector
docker run -it -p8080:8080 notaitech/nudenet:detector

# See fastDeploy-file_client.py for running predictions via fastDeploy's REST endpoints 
wget https://raw.githubusercontent.com/notAI-tech/fastDeploy/master/cli/fastDeploy-file_client.py
# Single input
python fastDeploy-file_client.py --file PATH_TO_YOUR_IMAGE

# Client side batching
python fastDeploy-file_client.py --dir PATH_TO_FOLDER --ext jpg
```

**Note: golang example https://github.com/notAI-tech/NudeNet/issues/63#issuecomment-729555360**, thanks to [Preetham Kamidi](https://github.com/preetham)


# As Python module
**Installation**:
```bash
pip install --upgrade nudenet
```

**Classifier Usage**:
```python
# Import module
from nudenet import NudeClassifier

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier = NudeClassifier()

# Classify single image
classifier.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier.classify(['path_to_image_1', 'path_to_image_2'], batch_size=BATCH_SIZE)
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

# Classify video
# batch_size is optional; defaults to 4
classifier.classify_video('path_to_video', batch_size=BATCH_SIZE)
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'safe': PROBABILITY, 'unsafe': PROBABILITY}, ....}}

```

Thanks to [Johnny Urosevic](https://github.com/JohnnyUrosevic), NudeClassifier is also available in tflite.

**TFLite Classifier Usage**:
```python
# Import module
from nudenet import NudeClassifierLite

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier_lite = NudeClassifierLite()

# Classify single image
classifier_lite.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier_lite.classify(['path_to_image_1', 'path_to_image_2'])
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

```

Using the tflite classifier from flutter: **https://github.com/ndaysinaiK/nude-test** 

**Detector Usage**:
```python
# Import module
from nudenet import NudeDetector

# initialize detector (downloads the checkpoint file automatically the first time)
detector = NudeDetector() # detector = NudeDetector('base') for the "base" version of detector.

# Detect single image
detector.detect('path_to_image')
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect('path_to_image', mode='fast')
# Returns [{'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...]

# Detect video
# batch_size is optional; defaults to 2
# show_progress is optional; defaults to True
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN)
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN, mode='fast')
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...], ....}}



```

# Notes:
- detect_video and classify_video first identify the "unique" frames in a video and run predictions on them for significant performance improvement.
- V1 of NudeDetector (available in master branch of this repo) was trained on 12000 images labelled by the good folks at cti-community.
- V2 (current version) of NudeDetector is trained on 160,000 entirely auto-labelled (using classification heat maps and various other hybrid techniques) images. 
- The entire data for the classifier is available at https://archive.org/details/NudeNet_classifier_dataset_v1
- A part of the auto-labelled data (Images are from the classifier dataset above) used to train the base Detector is available at https://github.com/notAI-tech/NudeNet/releases/download/v0/DETECTOR_AUTO_GENERATED_DATA.zip




%package help
Summary:	Development documents and examples for NudeNet
Provides:	python3-NudeNet-doc
%description help

# NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

[![DOI](https://zenodo.org/badge/173154449.svg)](https://zenodo.org/badge/latestdoi/173154449)

Uncensored version of the following image can be found at https://i.imgur.com/rga6845.jpg (NSFW)

![](https://i.imgur.com/0KPJbl9.jpg)

**Classifier classes:**
|class name   |  Description    |
|--------|:--------------:
|safe | Image/Video is not sexually explicit     |
|unsafe | Image/Video is sexually explicit|

**Default Detector classes:**
|class name   |  Description                    |
|--------|:-------------------------------------:
|EXPOSED_ANUS | Exposed Anus; Any gender |
|EXPOSED_ARMPITS | Exposed Armpits; Any gender |
|COVERED_BELLY | Provocative, but covered Belly; Any gender |
|EXPOSED_BELLY | Exposed Belly; Any gender |
|COVERED_BUTTOCKS | Provocative, but covered Buttocks; Any gender |
|EXPOSED_BUTTOCKS | Exposed Buttocks; Any gender |
|FACE_F | Female Face|
|FACE_M | Male Face|
|COVERED_FEET |Covered Feet; Any gender |
|EXPOSED_FEET | Exposed Feet; Any gender|
|COVERED_BREAST_F | Provocative, but covered Breast; Female |
|EXPOSED_BREAST_F | Exposed Breast; Female |
|COVERED_GENITALIA_F |Provocative, but covered Genitalia; Female|
|EXPOSED_GENITALIA_F |Exposed Genitalia; Female |
|EXPOSED_BREAST_M |Exposed Breast; Male |
|EXPOSED_GENITALIA_M |Exposed Genitalia; Male |

**Base Detector classes:**
|class name   |  Description    |
|--------|:--------------:
|EXPOSED_BELLY | Exposed Belly; Any gender |
|EXPOSED_BUTTOCKS | Exposed Buttocks; Any gender |
|EXPOSED_BREAST_F | Exposed Breast; Female |
|EXPOSED_GENITALIA_F |Exposed Genitalia; Female |
|EXPOSED_GENITALIA_M |Exposed Genitalia; Male |
|EXPOSED_BREAST_M |Exposed Breast; Male |

# As self-hostable API service
```bash
# Classifier
docker run -it -p8080:8080 notaitech/nudenet:classifier

# Detector
docker run -it -p8080:8080 notaitech/nudenet:detector

# See fastDeploy-file_client.py for running predictions via fastDeploy's REST endpoints 
wget https://raw.githubusercontent.com/notAI-tech/fastDeploy/master/cli/fastDeploy-file_client.py
# Single input
python fastDeploy-file_client.py --file PATH_TO_YOUR_IMAGE

# Client side batching
python fastDeploy-file_client.py --dir PATH_TO_FOLDER --ext jpg
```

**Note: golang example https://github.com/notAI-tech/NudeNet/issues/63#issuecomment-729555360**, thanks to [Preetham Kamidi](https://github.com/preetham)


# As Python module
**Installation**:
```bash
pip install --upgrade nudenet
```

**Classifier Usage**:
```python
# Import module
from nudenet import NudeClassifier

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier = NudeClassifier()

# Classify single image
classifier.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier.classify(['path_to_image_1', 'path_to_image_2'], batch_size=BATCH_SIZE)
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

# Classify video
# batch_size is optional; defaults to 4
classifier.classify_video('path_to_video', batch_size=BATCH_SIZE)
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'safe': PROBABILITY, 'unsafe': PROBABILITY}, ....}}

```

Thanks to [Johnny Urosevic](https://github.com/JohnnyUrosevic), NudeClassifier is also available in tflite.

**TFLite Classifier Usage**:
```python
# Import module
from nudenet import NudeClassifierLite

# initialize classifier (downloads the checkpoint file automatically the first time)
classifier_lite = NudeClassifierLite()

# Classify single image
classifier_lite.classify('path_to_image_1')
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}
# Classify multiple images (batch prediction)
# batch_size is optional; defaults to 4
classifier_lite.classify(['path_to_image_1', 'path_to_image_2'])
# Returns {'path_to_image_1': {'safe': PROBABILITY, 'unsafe': PROBABILITY},
#          'path_to_image_2': {'safe': PROBABILITY, 'unsafe': PROBABILITY}}

```

Using the tflite classifier from flutter: **https://github.com/ndaysinaiK/nude-test** 

**Detector Usage**:
```python
# Import module
from nudenet import NudeDetector

# initialize detector (downloads the checkpoint file automatically the first time)
detector = NudeDetector() # detector = NudeDetector('base') for the "base" version of detector.

# Detect single image
detector.detect('path_to_image')
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect('path_to_image', mode='fast')
# Returns [{'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...]

# Detect video
# batch_size is optional; defaults to 2
# show_progress is optional; defaults to True
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN)
# fast mode is ~3x faster compared to default mode with slightly lower accuracy.
detector.detect_video('path_to_video', batch_size=BATCH_SIZE, show_progress=BOOLEAN, mode='fast')
# Returns {"metadata": {"fps": FPS, "video_length": TOTAL_N_FRAMES, "video_path": 'path_to_video'},
#          "preds": {frame_i: {'box': LIST_OF_COORDINATES, 'score': PROBABILITY, 'label': LABEL}, ...], ....}}



```

# Notes:
- detect_video and classify_video first identify the "unique" frames in a video and run predictions on them for significant performance improvement.
- V1 of NudeDetector (available in master branch of this repo) was trained on 12000 images labelled by the good folks at cti-community.
- V2 (current version) of NudeDetector is trained on 160,000 entirely auto-labelled (using classification heat maps and various other hybrid techniques) images. 
- The entire data for the classifier is available at https://archive.org/details/NudeNet_classifier_dataset_v1
- A part of the auto-labelled data (Images are from the classifier dataset above) used to train the base Detector is available at https://github.com/notAI-tech/NudeNet/releases/download/v0/DETECTOR_AUTO_GENERATED_DATA.zip




%prep
%autosetup -n NudeNet-2.0.9

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-NudeNet -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.9-1
- Package Spec generated