1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
%global _empty_manifest_terminate_build 0
Name: python-numcompress
Version: 0.1.2
Release: 1
Summary: Python package to convert numerical series & numpy arrays into compressed strings
License: MIT
URL: https://github.com/amit1rrr/numcompress
Source0: https://mirrors.aliyun.com/pypi/web/packages/5c/76/4fec4fc7534dc96fdb220a1aeccbc034c733eddd4dd6f0445b52f21c65d1/numcompress-0.1.2.tar.gz
BuildArch: noarch
Requires: python3-numpy
%description
[](https://badge.fury.io/py/numcompress) [](https://travis-ci.org/amit1rrr/numcompress) [](https://coveralls.io/github/amit1rrr/numcompress)
# numcompress
Simple way to compress and decompress numerical series & numpy arrays.
- Easily gets you above 80% compression ratio
- You can specify the precision you need for floating points (up to 10 decimal points)
- Useful to store or transmit stock prices, monitoring data & other time series data in compressed string format
Compression algorithm is based on [google encoded polyline format](https://developers.google.com/maps/documentation/utilities/polylinealgorithm). I modified it to preserve arbitrary precision and apply it to any numerical series. The work is motivated by usefulness of [time aware polyline](https://www.hypertrack.com/blog/2016/09/01/the-missing-dimension-in-geospatial-data-formats/) built by [Arjun Attam](https://github.com/arjun27) at [HyperTrack](https://github.com/hypertrack/time-aware-polyline-py).
After building this I came across [arrays](https://docs.python.org/3/library/array.html) that are much efficient than lists in terms memory footprint. You might consider using that over numcompress if you don't care about conversion to string for transmitting or storing purpose.
# Installation
```
pip install numcompress
```
# Usage
```python
from numcompress import compress, decompress
# Integers
>>> compress([14578, 12759, 13525])
'B_twxZnv_nB_bwm@'
>>> decompress('B_twxZnv_nB_bwm@')
[14578.0, 12759.0, 13525.0]
```
```python
# Floats - lossless compression
# precision argument specifies how many decimal points to preserve, defaults to 3
>>> compress([145.7834, 127.5989, 135.2569], precision=4)
'Csi~wAhdbJgqtC'
>>> decompress('Csi~wAhdbJgqtC')
[145.7834, 127.5989, 135.2569]
```
```python
# Floats - lossy compression
>>> compress([145.7834, 127.5989, 135.2569], precision=2)
'Acn[rpB{n@'
>>> decompress('Acn[rpB{n@')
[145.78, 127.6, 135.26]
```
```python
# compressing and decompressing numpy arrays
>>> from numcompress import compress_ndarray, decompress_ndarray
>>> import numpy as np
>>> series = np.random.randint(1, 100, 25).reshape(5, 5)
>>> compressed_series = compress_ndarray(series)
>>> decompressed_series = decompress_ndarray(compressed_series)
>>> series
array([[29, 95, 10, 48, 20],
[60, 98, 73, 96, 71],
[95, 59, 8, 6, 17],
[ 5, 12, 69, 65, 52],
[84, 6, 83, 20, 50]])
>>> compressed_series
'5*5,Bosw@_|_Cn_eD_fiA~tu@_cmA_fiAnyo@o|k@nyo@_{m@~heAnrbB~{BonT~lVotLoinB~xFnkX_o}@~iwCokuCn`zB_ry@'
>>> decompressed_series
array([[29., 95., 10., 48., 20.],
[60., 98., 73., 96., 71.],
[95., 59., 8., 6., 17.],
[ 5., 12., 69., 65., 52.],
[84., 6., 83., 20., 50.]])
>>> (series == decompressed_series).all()
True
```
# Compression Ratio
| Test | # of Numbers | Compression ratio |
| ------------- |-------------- |---------------------------|
| [Integers](https://github.com/amit1rrr/numcompress/blob/master/test/test_numcompress.py#L29) | 10k | **91.14%** |
| [Floats](https://github.com/amit1rrr/numcompress/blob/master/test/test_numcompress.py#L49) | 10k | **81.35%** |
You can run the test suite with -s switch to see the compression ratio. You can even modify the tests to see what kind of compression ratio you will get for your own input.
```
pytest -s
```
Here's a quick example showing compression ratio:
```python
>>> series = random.sample(range(1, 100000), 50000) # generate 50k random numbers between 1 and 100k
>>> text = compress(series) # apply compression
>>> original_size = sum(sys.getsizeof(i) for i in series)
>>> original_size
1200000
>>> compressed_size = sys.getsizeof(text)
>>> compressed_size
284092
>>> compression_ratio = ((original_size - compressed_size) * 100.0) / original_size
>>> compression_ratio
76.32566666666666
```
We get ~76% compression for 50k random numbers between 1 & 100k. This ratio increases for real world numerical series as the difference between consecutive numbers tends to be lower. Think of stock prices, monitoring & other time series data.
# Contribute
If you see any problem, open an issue or send a pull request. You can write to [me](https://blog.amirathi.com/about/) at [amit.juschill@gmail.com](mailto:amit.juschill@gmail.com)
%package -n python3-numcompress
Summary: Python package to convert numerical series & numpy arrays into compressed strings
Provides: python-numcompress
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-numcompress
[](https://badge.fury.io/py/numcompress) [](https://travis-ci.org/amit1rrr/numcompress) [](https://coveralls.io/github/amit1rrr/numcompress)
# numcompress
Simple way to compress and decompress numerical series & numpy arrays.
- Easily gets you above 80% compression ratio
- You can specify the precision you need for floating points (up to 10 decimal points)
- Useful to store or transmit stock prices, monitoring data & other time series data in compressed string format
Compression algorithm is based on [google encoded polyline format](https://developers.google.com/maps/documentation/utilities/polylinealgorithm). I modified it to preserve arbitrary precision and apply it to any numerical series. The work is motivated by usefulness of [time aware polyline](https://www.hypertrack.com/blog/2016/09/01/the-missing-dimension-in-geospatial-data-formats/) built by [Arjun Attam](https://github.com/arjun27) at [HyperTrack](https://github.com/hypertrack/time-aware-polyline-py).
After building this I came across [arrays](https://docs.python.org/3/library/array.html) that are much efficient than lists in terms memory footprint. You might consider using that over numcompress if you don't care about conversion to string for transmitting or storing purpose.
# Installation
```
pip install numcompress
```
# Usage
```python
from numcompress import compress, decompress
# Integers
>>> compress([14578, 12759, 13525])
'B_twxZnv_nB_bwm@'
>>> decompress('B_twxZnv_nB_bwm@')
[14578.0, 12759.0, 13525.0]
```
```python
# Floats - lossless compression
# precision argument specifies how many decimal points to preserve, defaults to 3
>>> compress([145.7834, 127.5989, 135.2569], precision=4)
'Csi~wAhdbJgqtC'
>>> decompress('Csi~wAhdbJgqtC')
[145.7834, 127.5989, 135.2569]
```
```python
# Floats - lossy compression
>>> compress([145.7834, 127.5989, 135.2569], precision=2)
'Acn[rpB{n@'
>>> decompress('Acn[rpB{n@')
[145.78, 127.6, 135.26]
```
```python
# compressing and decompressing numpy arrays
>>> from numcompress import compress_ndarray, decompress_ndarray
>>> import numpy as np
>>> series = np.random.randint(1, 100, 25).reshape(5, 5)
>>> compressed_series = compress_ndarray(series)
>>> decompressed_series = decompress_ndarray(compressed_series)
>>> series
array([[29, 95, 10, 48, 20],
[60, 98, 73, 96, 71],
[95, 59, 8, 6, 17],
[ 5, 12, 69, 65, 52],
[84, 6, 83, 20, 50]])
>>> compressed_series
'5*5,Bosw@_|_Cn_eD_fiA~tu@_cmA_fiAnyo@o|k@nyo@_{m@~heAnrbB~{BonT~lVotLoinB~xFnkX_o}@~iwCokuCn`zB_ry@'
>>> decompressed_series
array([[29., 95., 10., 48., 20.],
[60., 98., 73., 96., 71.],
[95., 59., 8., 6., 17.],
[ 5., 12., 69., 65., 52.],
[84., 6., 83., 20., 50.]])
>>> (series == decompressed_series).all()
True
```
# Compression Ratio
| Test | # of Numbers | Compression ratio |
| ------------- |-------------- |---------------------------|
| [Integers](https://github.com/amit1rrr/numcompress/blob/master/test/test_numcompress.py#L29) | 10k | **91.14%** |
| [Floats](https://github.com/amit1rrr/numcompress/blob/master/test/test_numcompress.py#L49) | 10k | **81.35%** |
You can run the test suite with -s switch to see the compression ratio. You can even modify the tests to see what kind of compression ratio you will get for your own input.
```
pytest -s
```
Here's a quick example showing compression ratio:
```python
>>> series = random.sample(range(1, 100000), 50000) # generate 50k random numbers between 1 and 100k
>>> text = compress(series) # apply compression
>>> original_size = sum(sys.getsizeof(i) for i in series)
>>> original_size
1200000
>>> compressed_size = sys.getsizeof(text)
>>> compressed_size
284092
>>> compression_ratio = ((original_size - compressed_size) * 100.0) / original_size
>>> compression_ratio
76.32566666666666
```
We get ~76% compression for 50k random numbers between 1 & 100k. This ratio increases for real world numerical series as the difference between consecutive numbers tends to be lower. Think of stock prices, monitoring & other time series data.
# Contribute
If you see any problem, open an issue or send a pull request. You can write to [me](https://blog.amirathi.com/about/) at [amit.juschill@gmail.com](mailto:amit.juschill@gmail.com)
%package help
Summary: Development documents and examples for numcompress
Provides: python3-numcompress-doc
%description help
[](https://badge.fury.io/py/numcompress) [](https://travis-ci.org/amit1rrr/numcompress) [](https://coveralls.io/github/amit1rrr/numcompress)
# numcompress
Simple way to compress and decompress numerical series & numpy arrays.
- Easily gets you above 80% compression ratio
- You can specify the precision you need for floating points (up to 10 decimal points)
- Useful to store or transmit stock prices, monitoring data & other time series data in compressed string format
Compression algorithm is based on [google encoded polyline format](https://developers.google.com/maps/documentation/utilities/polylinealgorithm). I modified it to preserve arbitrary precision and apply it to any numerical series. The work is motivated by usefulness of [time aware polyline](https://www.hypertrack.com/blog/2016/09/01/the-missing-dimension-in-geospatial-data-formats/) built by [Arjun Attam](https://github.com/arjun27) at [HyperTrack](https://github.com/hypertrack/time-aware-polyline-py).
After building this I came across [arrays](https://docs.python.org/3/library/array.html) that are much efficient than lists in terms memory footprint. You might consider using that over numcompress if you don't care about conversion to string for transmitting or storing purpose.
# Installation
```
pip install numcompress
```
# Usage
```python
from numcompress import compress, decompress
# Integers
>>> compress([14578, 12759, 13525])
'B_twxZnv_nB_bwm@'
>>> decompress('B_twxZnv_nB_bwm@')
[14578.0, 12759.0, 13525.0]
```
```python
# Floats - lossless compression
# precision argument specifies how many decimal points to preserve, defaults to 3
>>> compress([145.7834, 127.5989, 135.2569], precision=4)
'Csi~wAhdbJgqtC'
>>> decompress('Csi~wAhdbJgqtC')
[145.7834, 127.5989, 135.2569]
```
```python
# Floats - lossy compression
>>> compress([145.7834, 127.5989, 135.2569], precision=2)
'Acn[rpB{n@'
>>> decompress('Acn[rpB{n@')
[145.78, 127.6, 135.26]
```
```python
# compressing and decompressing numpy arrays
>>> from numcompress import compress_ndarray, decompress_ndarray
>>> import numpy as np
>>> series = np.random.randint(1, 100, 25).reshape(5, 5)
>>> compressed_series = compress_ndarray(series)
>>> decompressed_series = decompress_ndarray(compressed_series)
>>> series
array([[29, 95, 10, 48, 20],
[60, 98, 73, 96, 71],
[95, 59, 8, 6, 17],
[ 5, 12, 69, 65, 52],
[84, 6, 83, 20, 50]])
>>> compressed_series
'5*5,Bosw@_|_Cn_eD_fiA~tu@_cmA_fiAnyo@o|k@nyo@_{m@~heAnrbB~{BonT~lVotLoinB~xFnkX_o}@~iwCokuCn`zB_ry@'
>>> decompressed_series
array([[29., 95., 10., 48., 20.],
[60., 98., 73., 96., 71.],
[95., 59., 8., 6., 17.],
[ 5., 12., 69., 65., 52.],
[84., 6., 83., 20., 50.]])
>>> (series == decompressed_series).all()
True
```
# Compression Ratio
| Test | # of Numbers | Compression ratio |
| ------------- |-------------- |---------------------------|
| [Integers](https://github.com/amit1rrr/numcompress/blob/master/test/test_numcompress.py#L29) | 10k | **91.14%** |
| [Floats](https://github.com/amit1rrr/numcompress/blob/master/test/test_numcompress.py#L49) | 10k | **81.35%** |
You can run the test suite with -s switch to see the compression ratio. You can even modify the tests to see what kind of compression ratio you will get for your own input.
```
pytest -s
```
Here's a quick example showing compression ratio:
```python
>>> series = random.sample(range(1, 100000), 50000) # generate 50k random numbers between 1 and 100k
>>> text = compress(series) # apply compression
>>> original_size = sum(sys.getsizeof(i) for i in series)
>>> original_size
1200000
>>> compressed_size = sys.getsizeof(text)
>>> compressed_size
284092
>>> compression_ratio = ((original_size - compressed_size) * 100.0) / original_size
>>> compression_ratio
76.32566666666666
```
We get ~76% compression for 50k random numbers between 1 & 100k. This ratio increases for real world numerical series as the difference between consecutive numbers tends to be lower. Think of stock prices, monitoring & other time series data.
# Contribute
If you see any problem, open an issue or send a pull request. You can write to [me](https://blog.amirathi.com/about/) at [amit.juschill@gmail.com](mailto:amit.juschill@gmail.com)
%prep
%autosetup -n numcompress-0.1.2
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-numcompress -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.2-1
- Package Spec generated
|