summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-nuradiomc.spec282
-rw-r--r--sources1
3 files changed, 284 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..2049171 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/nuradiomc-2.1.8.tar.gz
diff --git a/python-nuradiomc.spec b/python-nuradiomc.spec
new file mode 100644
index 0000000..353355d
--- /dev/null
+++ b/python-nuradiomc.spec
@@ -0,0 +1,282 @@
+%global _empty_manifest_terminate_build 0
+Name: python-nuradiomc
+Version: 2.1.8
+Release: 1
+Summary: A Monte Carlo simulation package for radio neutrino detectors and reconstruction framework for radio detectors of high-energy neutrinos and cosmic-rays.
+License: GPL-3.0-or-later
+URL: https://github.com/nu-radio/NuRadioMC
+Source0: https://mirrors.aliyun.com/pypi/web/packages/76/20/4be4e6996ac7d1d49691ae3ed8ab40c05a9809bc93d31fc581162d21f1d3/nuradiomc-2.1.8.tar.gz
+BuildArch: noarch
+
+Requires: python3-aenum
+Requires: python3-astropy
+Requires: python3-awkward
+Requires: python3-cython
+Requires: python3-dash
+Requires: python3-future
+Requires: python3-h5py
+Requires: python3-importlib-metadata
+Requires: python3-matplotlib
+Requires: python3-numba
+Requires: python3-numpy
+Requires: python3-peakutils
+Requires: python3-pymongo
+Requires: python3-pyyaml
+Requires: python3-radiotools
+Requires: python3-requests
+Requires: python3-scipy
+Requires: python3-tinydb
+Requires: python3-tinydb-serialization
+Requires: python3-toml
+Requires: python3-uproot
+
+%description
+# NuRadioMC/NuRadioReco
+A Monte Carlo simulation package for radio neutrino detectors and reconstruction framework for radio detectors of high-energy neutrinos and cosmic-rays
+
+The documentation can be found at https://nu-radio.github.io/NuRadioMC/main.html
+
+If you want to keep up to date, consider signing up to the following email lists:
+ * user email list, will be used to announce new versions and major improvements etc. Subscribe via https://lists.uu.se/sympa/subscribe/physics-astro-nuradiomc
+ * developer email list, will be used to discuss the future development of NuRadioMC/Reco. Subscribe via: https://lists.uu.se/sympa/subscribe/physics-astro-nuradiomc-dev
+
+If you're using NuRadioMC for your research, please cite
+
+* C. Glaser, D. Garcia-Fernandez, A. Nelles et al., "NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector", [European Physics Journal C 80, 77 (2020)](https://dx.doi.org/10.1140/epjc/s10052-020-7612-8), [arXiv:1906.01670](https://arxiv.org/abs/1906.01670)
+
+and for the detector simulation and event reconstruction part
+
+* C. Glaser, A. Nelles, I. Plaisier, C. Welling et al., "NuRadioReco: A reconstruction framework for radio neutrino detectors", [Eur. Phys. J. C (2019) 79: 464](https://dx.doi.org/10.1140/epjc/s10052-019-6971-5), [arXiv:1903.07023](https://arxiv.org/abs/1903.07023)
+
+
+
+NuRadioMC is continuously improved and new features are being added. The following papers document new features (in reverse chronological order):
+
+* N. Heyer and C. Glaser, “First-principle calculation of birefringence effects for in-ice radio detection of neutrinos”, [arXiv:2205.06169](https://arxiv.org/abs/2205.15872) (adds birefringence modelling to NuRadioMC)
+
+* B. Oeyen, I. Plaisier, A. Nelles, C. Glaser, T. Winchen, "Effects of firn ice models on radio neutrino simulations using a RadioPropa ray tracer", [PoS(ICRC2021)1027](https://doi.org/10.22323/1.395.1027) (adds numerical ray tracer RadioPropa to allow signal propagation in arbitrary 3D index-of-refraction profiles)
+
+* C. Glaser D. García-Fernández and A. Nelles, "Prospects for neutrino-flavor physics with in-ice radio detectors", [PoS(ICRC2021)1231](https://doi.org/10.22323/1.395.1231) (generalizes NuRadioMC to simulate the radio emission from any number of in-ice showers including their interference)
+
+* D. García-Fernández, C. Glaser and A. Nelles, “The signatures of secondary leptons in radio-neutrino detectors in ice”, [Phys. Rev. D 102, 083011](https://dx.doi.org/10.1103/PhysRevD.102.083011), [arXiv:2003.13442](https://arxiv.org/abs/2003.13442) (addition of secondary interactions of muons and taus)
+
+
+
+If you would like to contribute, please contact @cg-laser or @anelles for permissions to work on NuRadioMC. We work with pull requests only that can be merged after review.
+Also please visit https://nu-radio.github.io/NuRadioMC/Introduction/pages/contributing.html for details on our workflow and coding conventions.
+
+NuRadioMC is used in an increasing number of studies. To get an overview for what NuRadioMC can be used for, please have a look at the following publications or see [here](https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=refersto%3Arecid%3A1738571%20or%20refersto%3Arecid%3A1725583):
+
+
+* V. B. Valera, M. Bustamante and C. Glaser, “Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos”, [arXiv:2210.03756](https://arxiv.org/abs/2210.03756)
+* Alfonso Garcia Soto, Diksha Garg, Mary Hall Reno, Carlos A. Argüelles, "Probing Quantum Gravity with Elastic Interactions of Ultra-High-Energy Neutrinos", [arXiv:2209.06282](https://arxiv.org/abs/2209.06282)
+* Damiano F. G. Fiorillo, Mauricio Bustamante, Victor B. Valera, "Near-future discovery of point sources of ultra-high-energy neutrinos", [arXiv:2205.15985](https://arxiv.org/abs/2205.15985)
+* C. Glaser, S. McAleer, S. Stjärnholm, P. Baldi, S. W. Barwick, “Deep learning reconstruction of the neutrino direction and energy from in-ice radio detector data”, Astroparticle Physics 145, (2023) 102781, [doi:10.1016/j.astropartphys.2022.102781](https://doi.org/10.1016/j.astropartphys.2022.102781), [arXiv:2205.15872](https://arxiv.org/abs/2205.15872)
+* J. Beise and C. Glaser, “In-situ calibration system for the measurement of the snow accumulation and the index-of-refraction profile for radio neutrino detectors”, [arXiv:2205.00726](https://arxiv.org/abs/2205.00726)
+* V. B. Valera, M. Bustamante and C. Glaser, “The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery”, Journal of High Energy Physics 06 (2022) 105, [doi:10.1007/JHEP06(2022)105](https://doi.org/10.1007/JHEP06(2022%29105), [arXiv:2204.04237](https://arxiv.org/abs/2204.04237)
+* ARIANNA collaboration (A. Anker et al.), “Measuring the Polarization Reconstruction Resolution of the ARIANNA Neutrino Detector with Cosmic Rays”, Journal of Cosmology and Astroparticle Physics 04(2022)022, [doi:10.1088/1475-7516/2022/04/022](https://doi.org/10.1088/1475-7516/2022/04/022), [arXiv:2112.01501](https://arxiv.org/abs/2112.01501)
+* ARIANNA collaboration (A. Anker et al.), “Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning”, Journal of Instrumentation 17 P03007 (2022), [doi:10.1088/1748-0221/17/03/P03007](https://doi.org/10.1088/1748-0221/17/03/P03007), [arXiv:2112.01031](https://arxiv.org/abs/2112.01031)
+* RNO-G collaboration (J. A. Aguilar et al.), “Reconstructing the neutrino energy for in-ice radio detectors”, European Physics Journal C (2022) 82:147, [doi:10.1140/epjc/s10052-022-10034-4](https://doi.org/10.1140/epjc/s10052-022-10034-4), [arXiv:2107.02604](https://arxiv.org/abs/2107.02604)
+* S. Stjärnholm, O. Ericsson and C. Glaser, "Neutrino direction and flavor reconstruction from radio detector data using deep convolutional neural networks", [PoS(ICRC2021)1055](https://doi.org/10.22323/1.395.1055)
+* S. Hallmann et al., "Sensitivity studies for the IceCube-Gen2 radio array", [PoS(ICRC2021)1183](https://doi.org/10.22323/1.395.1183)
+* Y. Pan, "A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)", [PoS(ICRC2021)1157](https://doi.org/10.22323/1.395.1157)
+* A. Anker et al., "A novel trigger based on neural networks for radio neutrino detectors", [PoS(ICRC2021)1074](https://doi.org/10.22323/1.395.1074)
+* L. Zhao et al., "Polarization Reconstruction of Cosmic Rays with the ARIANNA Neutrino Radio Detector", [PoS(ICRC2021)1156](https://doi.org/10.22323/1.395.1156)
+* J. Beise et al. "Development of an in-situ calibration device of firn properties for Askaryan neutrino detectors", [PoS(ICRC2021)1069](https://doi.org/10.22323/1.395.1069)
+* I. Plaisier et al., "Direction reconstruction for the Radio Neutrino Observatory Greenland", [PoS(ICRC2021)1026](https://doi.org/10.22323/1.395.1026)
+* C. Welling et al., "Energy reconstruction with the Radio Neutrino Observatory Greenland (RNO-G)", [PoS(ICRC2021)1033](https://doi.org/10.22323/1.395.1033)
+* C. Glaser, S. McAleer, P. Baldi and S.W. Barwick, "Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector", [PoS(ICRC2021)1051](https://doi.org/10.22323/1.395.1051)
+* S. Barwick et al., "Capabilities of ARIANNA: Neutrino Pointing Resolution and Implications for Future Ultra-high Energy Neutrino Astronomy", [PoS(ICRC2021)1151](https://doi.org/10.22323/1.395.1151)
+* S. Barwick et al., "Science case and detector concept for ARIANNA high energy neutrino telescope at Moore's Bay, Antarctica", [PoS(ICRC2021)1190](https://doi.org/10.22323/1.395.1190)
+* Ice-Cube-Gen2 collaboration, "IceCube-Gen2: The Window to the Extreme Universe", [J.Phys.G 48 (2021) 6, 060501](https://doi.org/10.1088/1361-6471/abbd48), [arXiv:2008.04323](https://arxiv.org/abs/2008.04323)
+* C. Welling et al., "Reconstructing non-repeating radio pulses with Information Field Theory", [JCAP 04 (2021) 071](https://doi.org/10.1088/1475-7516/2021/04/071), [arXiv:2102.00258](https://arxiv.org/abs/2102.00258)
+* C. Glaser, S. Barwick, "An improved trigger for Askaryan radio detectors", [JINST 16 (2021) 05, T05001](https://doi.org/10.1088/1748-0221/16/05/T05001), [arXiv:2011.12997](https://arxiv.org/abs/2011.12997)
+* RNO-G collaboration, "Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)", [JINST 16 (2021) 03, P03025](https://doi.org/10.1088/1748-0221/16/03/P03025) [arXiv:2010.12279](https://arxiv.org/abs/2010.12279)
+* ARIANNA collaboration, "Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole", [JINST 15 (2020) 09, P09039](https://doi.org/10.1088/1748-0221/15/09/P09039), [arXiv:2006.03027](https://arxiv.org/abs/2006.03027)
+
+
+
+%package -n python3-nuradiomc
+Summary: A Monte Carlo simulation package for radio neutrino detectors and reconstruction framework for radio detectors of high-energy neutrinos and cosmic-rays.
+Provides: python-nuradiomc
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-nuradiomc
+# NuRadioMC/NuRadioReco
+A Monte Carlo simulation package for radio neutrino detectors and reconstruction framework for radio detectors of high-energy neutrinos and cosmic-rays
+
+The documentation can be found at https://nu-radio.github.io/NuRadioMC/main.html
+
+If you want to keep up to date, consider signing up to the following email lists:
+ * user email list, will be used to announce new versions and major improvements etc. Subscribe via https://lists.uu.se/sympa/subscribe/physics-astro-nuradiomc
+ * developer email list, will be used to discuss the future development of NuRadioMC/Reco. Subscribe via: https://lists.uu.se/sympa/subscribe/physics-astro-nuradiomc-dev
+
+If you're using NuRadioMC for your research, please cite
+
+* C. Glaser, D. Garcia-Fernandez, A. Nelles et al., "NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector", [European Physics Journal C 80, 77 (2020)](https://dx.doi.org/10.1140/epjc/s10052-020-7612-8), [arXiv:1906.01670](https://arxiv.org/abs/1906.01670)
+
+and for the detector simulation and event reconstruction part
+
+* C. Glaser, A. Nelles, I. Plaisier, C. Welling et al., "NuRadioReco: A reconstruction framework for radio neutrino detectors", [Eur. Phys. J. C (2019) 79: 464](https://dx.doi.org/10.1140/epjc/s10052-019-6971-5), [arXiv:1903.07023](https://arxiv.org/abs/1903.07023)
+
+
+
+NuRadioMC is continuously improved and new features are being added. The following papers document new features (in reverse chronological order):
+
+* N. Heyer and C. Glaser, “First-principle calculation of birefringence effects for in-ice radio detection of neutrinos”, [arXiv:2205.06169](https://arxiv.org/abs/2205.15872) (adds birefringence modelling to NuRadioMC)
+
+* B. Oeyen, I. Plaisier, A. Nelles, C. Glaser, T. Winchen, "Effects of firn ice models on radio neutrino simulations using a RadioPropa ray tracer", [PoS(ICRC2021)1027](https://doi.org/10.22323/1.395.1027) (adds numerical ray tracer RadioPropa to allow signal propagation in arbitrary 3D index-of-refraction profiles)
+
+* C. Glaser D. García-Fernández and A. Nelles, "Prospects for neutrino-flavor physics with in-ice radio detectors", [PoS(ICRC2021)1231](https://doi.org/10.22323/1.395.1231) (generalizes NuRadioMC to simulate the radio emission from any number of in-ice showers including their interference)
+
+* D. García-Fernández, C. Glaser and A. Nelles, “The signatures of secondary leptons in radio-neutrino detectors in ice”, [Phys. Rev. D 102, 083011](https://dx.doi.org/10.1103/PhysRevD.102.083011), [arXiv:2003.13442](https://arxiv.org/abs/2003.13442) (addition of secondary interactions of muons and taus)
+
+
+
+If you would like to contribute, please contact @cg-laser or @anelles for permissions to work on NuRadioMC. We work with pull requests only that can be merged after review.
+Also please visit https://nu-radio.github.io/NuRadioMC/Introduction/pages/contributing.html for details on our workflow and coding conventions.
+
+NuRadioMC is used in an increasing number of studies. To get an overview for what NuRadioMC can be used for, please have a look at the following publications or see [here](https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=refersto%3Arecid%3A1738571%20or%20refersto%3Arecid%3A1725583):
+
+
+* V. B. Valera, M. Bustamante and C. Glaser, “Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos”, [arXiv:2210.03756](https://arxiv.org/abs/2210.03756)
+* Alfonso Garcia Soto, Diksha Garg, Mary Hall Reno, Carlos A. Argüelles, "Probing Quantum Gravity with Elastic Interactions of Ultra-High-Energy Neutrinos", [arXiv:2209.06282](https://arxiv.org/abs/2209.06282)
+* Damiano F. G. Fiorillo, Mauricio Bustamante, Victor B. Valera, "Near-future discovery of point sources of ultra-high-energy neutrinos", [arXiv:2205.15985](https://arxiv.org/abs/2205.15985)
+* C. Glaser, S. McAleer, S. Stjärnholm, P. Baldi, S. W. Barwick, “Deep learning reconstruction of the neutrino direction and energy from in-ice radio detector data”, Astroparticle Physics 145, (2023) 102781, [doi:10.1016/j.astropartphys.2022.102781](https://doi.org/10.1016/j.astropartphys.2022.102781), [arXiv:2205.15872](https://arxiv.org/abs/2205.15872)
+* J. Beise and C. Glaser, “In-situ calibration system for the measurement of the snow accumulation and the index-of-refraction profile for radio neutrino detectors”, [arXiv:2205.00726](https://arxiv.org/abs/2205.00726)
+* V. B. Valera, M. Bustamante and C. Glaser, “The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery”, Journal of High Energy Physics 06 (2022) 105, [doi:10.1007/JHEP06(2022)105](https://doi.org/10.1007/JHEP06(2022%29105), [arXiv:2204.04237](https://arxiv.org/abs/2204.04237)
+* ARIANNA collaboration (A. Anker et al.), “Measuring the Polarization Reconstruction Resolution of the ARIANNA Neutrino Detector with Cosmic Rays”, Journal of Cosmology and Astroparticle Physics 04(2022)022, [doi:10.1088/1475-7516/2022/04/022](https://doi.org/10.1088/1475-7516/2022/04/022), [arXiv:2112.01501](https://arxiv.org/abs/2112.01501)
+* ARIANNA collaboration (A. Anker et al.), “Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning”, Journal of Instrumentation 17 P03007 (2022), [doi:10.1088/1748-0221/17/03/P03007](https://doi.org/10.1088/1748-0221/17/03/P03007), [arXiv:2112.01031](https://arxiv.org/abs/2112.01031)
+* RNO-G collaboration (J. A. Aguilar et al.), “Reconstructing the neutrino energy for in-ice radio detectors”, European Physics Journal C (2022) 82:147, [doi:10.1140/epjc/s10052-022-10034-4](https://doi.org/10.1140/epjc/s10052-022-10034-4), [arXiv:2107.02604](https://arxiv.org/abs/2107.02604)
+* S. Stjärnholm, O. Ericsson and C. Glaser, "Neutrino direction and flavor reconstruction from radio detector data using deep convolutional neural networks", [PoS(ICRC2021)1055](https://doi.org/10.22323/1.395.1055)
+* S. Hallmann et al., "Sensitivity studies for the IceCube-Gen2 radio array", [PoS(ICRC2021)1183](https://doi.org/10.22323/1.395.1183)
+* Y. Pan, "A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)", [PoS(ICRC2021)1157](https://doi.org/10.22323/1.395.1157)
+* A. Anker et al., "A novel trigger based on neural networks for radio neutrino detectors", [PoS(ICRC2021)1074](https://doi.org/10.22323/1.395.1074)
+* L. Zhao et al., "Polarization Reconstruction of Cosmic Rays with the ARIANNA Neutrino Radio Detector", [PoS(ICRC2021)1156](https://doi.org/10.22323/1.395.1156)
+* J. Beise et al. "Development of an in-situ calibration device of firn properties for Askaryan neutrino detectors", [PoS(ICRC2021)1069](https://doi.org/10.22323/1.395.1069)
+* I. Plaisier et al., "Direction reconstruction for the Radio Neutrino Observatory Greenland", [PoS(ICRC2021)1026](https://doi.org/10.22323/1.395.1026)
+* C. Welling et al., "Energy reconstruction with the Radio Neutrino Observatory Greenland (RNO-G)", [PoS(ICRC2021)1033](https://doi.org/10.22323/1.395.1033)
+* C. Glaser, S. McAleer, P. Baldi and S.W. Barwick, "Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector", [PoS(ICRC2021)1051](https://doi.org/10.22323/1.395.1051)
+* S. Barwick et al., "Capabilities of ARIANNA: Neutrino Pointing Resolution and Implications for Future Ultra-high Energy Neutrino Astronomy", [PoS(ICRC2021)1151](https://doi.org/10.22323/1.395.1151)
+* S. Barwick et al., "Science case and detector concept for ARIANNA high energy neutrino telescope at Moore's Bay, Antarctica", [PoS(ICRC2021)1190](https://doi.org/10.22323/1.395.1190)
+* Ice-Cube-Gen2 collaboration, "IceCube-Gen2: The Window to the Extreme Universe", [J.Phys.G 48 (2021) 6, 060501](https://doi.org/10.1088/1361-6471/abbd48), [arXiv:2008.04323](https://arxiv.org/abs/2008.04323)
+* C. Welling et al., "Reconstructing non-repeating radio pulses with Information Field Theory", [JCAP 04 (2021) 071](https://doi.org/10.1088/1475-7516/2021/04/071), [arXiv:2102.00258](https://arxiv.org/abs/2102.00258)
+* C. Glaser, S. Barwick, "An improved trigger for Askaryan radio detectors", [JINST 16 (2021) 05, T05001](https://doi.org/10.1088/1748-0221/16/05/T05001), [arXiv:2011.12997](https://arxiv.org/abs/2011.12997)
+* RNO-G collaboration, "Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)", [JINST 16 (2021) 03, P03025](https://doi.org/10.1088/1748-0221/16/03/P03025) [arXiv:2010.12279](https://arxiv.org/abs/2010.12279)
+* ARIANNA collaboration, "Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole", [JINST 15 (2020) 09, P09039](https://doi.org/10.1088/1748-0221/15/09/P09039), [arXiv:2006.03027](https://arxiv.org/abs/2006.03027)
+
+
+
+%package help
+Summary: Development documents and examples for nuradiomc
+Provides: python3-nuradiomc-doc
+%description help
+# NuRadioMC/NuRadioReco
+A Monte Carlo simulation package for radio neutrino detectors and reconstruction framework for radio detectors of high-energy neutrinos and cosmic-rays
+
+The documentation can be found at https://nu-radio.github.io/NuRadioMC/main.html
+
+If you want to keep up to date, consider signing up to the following email lists:
+ * user email list, will be used to announce new versions and major improvements etc. Subscribe via https://lists.uu.se/sympa/subscribe/physics-astro-nuradiomc
+ * developer email list, will be used to discuss the future development of NuRadioMC/Reco. Subscribe via: https://lists.uu.se/sympa/subscribe/physics-astro-nuradiomc-dev
+
+If you're using NuRadioMC for your research, please cite
+
+* C. Glaser, D. Garcia-Fernandez, A. Nelles et al., "NuRadioMC: Simulating the radio emission of neutrinos from interaction to detector", [European Physics Journal C 80, 77 (2020)](https://dx.doi.org/10.1140/epjc/s10052-020-7612-8), [arXiv:1906.01670](https://arxiv.org/abs/1906.01670)
+
+and for the detector simulation and event reconstruction part
+
+* C. Glaser, A. Nelles, I. Plaisier, C. Welling et al., "NuRadioReco: A reconstruction framework for radio neutrino detectors", [Eur. Phys. J. C (2019) 79: 464](https://dx.doi.org/10.1140/epjc/s10052-019-6971-5), [arXiv:1903.07023](https://arxiv.org/abs/1903.07023)
+
+
+
+NuRadioMC is continuously improved and new features are being added. The following papers document new features (in reverse chronological order):
+
+* N. Heyer and C. Glaser, “First-principle calculation of birefringence effects for in-ice radio detection of neutrinos”, [arXiv:2205.06169](https://arxiv.org/abs/2205.15872) (adds birefringence modelling to NuRadioMC)
+
+* B. Oeyen, I. Plaisier, A. Nelles, C. Glaser, T. Winchen, "Effects of firn ice models on radio neutrino simulations using a RadioPropa ray tracer", [PoS(ICRC2021)1027](https://doi.org/10.22323/1.395.1027) (adds numerical ray tracer RadioPropa to allow signal propagation in arbitrary 3D index-of-refraction profiles)
+
+* C. Glaser D. García-Fernández and A. Nelles, "Prospects for neutrino-flavor physics with in-ice radio detectors", [PoS(ICRC2021)1231](https://doi.org/10.22323/1.395.1231) (generalizes NuRadioMC to simulate the radio emission from any number of in-ice showers including their interference)
+
+* D. García-Fernández, C. Glaser and A. Nelles, “The signatures of secondary leptons in radio-neutrino detectors in ice”, [Phys. Rev. D 102, 083011](https://dx.doi.org/10.1103/PhysRevD.102.083011), [arXiv:2003.13442](https://arxiv.org/abs/2003.13442) (addition of secondary interactions of muons and taus)
+
+
+
+If you would like to contribute, please contact @cg-laser or @anelles for permissions to work on NuRadioMC. We work with pull requests only that can be merged after review.
+Also please visit https://nu-radio.github.io/NuRadioMC/Introduction/pages/contributing.html for details on our workflow and coding conventions.
+
+NuRadioMC is used in an increasing number of studies. To get an overview for what NuRadioMC can be used for, please have a look at the following publications or see [here](https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=refersto%3Arecid%3A1738571%20or%20refersto%3Arecid%3A1725583):
+
+
+* V. B. Valera, M. Bustamante and C. Glaser, “Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos”, [arXiv:2210.03756](https://arxiv.org/abs/2210.03756)
+* Alfonso Garcia Soto, Diksha Garg, Mary Hall Reno, Carlos A. Argüelles, "Probing Quantum Gravity with Elastic Interactions of Ultra-High-Energy Neutrinos", [arXiv:2209.06282](https://arxiv.org/abs/2209.06282)
+* Damiano F. G. Fiorillo, Mauricio Bustamante, Victor B. Valera, "Near-future discovery of point sources of ultra-high-energy neutrinos", [arXiv:2205.15985](https://arxiv.org/abs/2205.15985)
+* C. Glaser, S. McAleer, S. Stjärnholm, P. Baldi, S. W. Barwick, “Deep learning reconstruction of the neutrino direction and energy from in-ice radio detector data”, Astroparticle Physics 145, (2023) 102781, [doi:10.1016/j.astropartphys.2022.102781](https://doi.org/10.1016/j.astropartphys.2022.102781), [arXiv:2205.15872](https://arxiv.org/abs/2205.15872)
+* J. Beise and C. Glaser, “In-situ calibration system for the measurement of the snow accumulation and the index-of-refraction profile for radio neutrino detectors”, [arXiv:2205.00726](https://arxiv.org/abs/2205.00726)
+* V. B. Valera, M. Bustamante and C. Glaser, “The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery”, Journal of High Energy Physics 06 (2022) 105, [doi:10.1007/JHEP06(2022)105](https://doi.org/10.1007/JHEP06(2022%29105), [arXiv:2204.04237](https://arxiv.org/abs/2204.04237)
+* ARIANNA collaboration (A. Anker et al.), “Measuring the Polarization Reconstruction Resolution of the ARIANNA Neutrino Detector with Cosmic Rays”, Journal of Cosmology and Astroparticle Physics 04(2022)022, [doi:10.1088/1475-7516/2022/04/022](https://doi.org/10.1088/1475-7516/2022/04/022), [arXiv:2112.01501](https://arxiv.org/abs/2112.01501)
+* ARIANNA collaboration (A. Anker et al.), “Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning”, Journal of Instrumentation 17 P03007 (2022), [doi:10.1088/1748-0221/17/03/P03007](https://doi.org/10.1088/1748-0221/17/03/P03007), [arXiv:2112.01031](https://arxiv.org/abs/2112.01031)
+* RNO-G collaboration (J. A. Aguilar et al.), “Reconstructing the neutrino energy for in-ice radio detectors”, European Physics Journal C (2022) 82:147, [doi:10.1140/epjc/s10052-022-10034-4](https://doi.org/10.1140/epjc/s10052-022-10034-4), [arXiv:2107.02604](https://arxiv.org/abs/2107.02604)
+* S. Stjärnholm, O. Ericsson and C. Glaser, "Neutrino direction and flavor reconstruction from radio detector data using deep convolutional neural networks", [PoS(ICRC2021)1055](https://doi.org/10.22323/1.395.1055)
+* S. Hallmann et al., "Sensitivity studies for the IceCube-Gen2 radio array", [PoS(ICRC2021)1183](https://doi.org/10.22323/1.395.1183)
+* Y. Pan, "A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)", [PoS(ICRC2021)1157](https://doi.org/10.22323/1.395.1157)
+* A. Anker et al., "A novel trigger based on neural networks for radio neutrino detectors", [PoS(ICRC2021)1074](https://doi.org/10.22323/1.395.1074)
+* L. Zhao et al., "Polarization Reconstruction of Cosmic Rays with the ARIANNA Neutrino Radio Detector", [PoS(ICRC2021)1156](https://doi.org/10.22323/1.395.1156)
+* J. Beise et al. "Development of an in-situ calibration device of firn properties for Askaryan neutrino detectors", [PoS(ICRC2021)1069](https://doi.org/10.22323/1.395.1069)
+* I. Plaisier et al., "Direction reconstruction for the Radio Neutrino Observatory Greenland", [PoS(ICRC2021)1026](https://doi.org/10.22323/1.395.1026)
+* C. Welling et al., "Energy reconstruction with the Radio Neutrino Observatory Greenland (RNO-G)", [PoS(ICRC2021)1033](https://doi.org/10.22323/1.395.1033)
+* C. Glaser, S. McAleer, P. Baldi and S.W. Barwick, "Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector", [PoS(ICRC2021)1051](https://doi.org/10.22323/1.395.1051)
+* S. Barwick et al., "Capabilities of ARIANNA: Neutrino Pointing Resolution and Implications for Future Ultra-high Energy Neutrino Astronomy", [PoS(ICRC2021)1151](https://doi.org/10.22323/1.395.1151)
+* S. Barwick et al., "Science case and detector concept for ARIANNA high energy neutrino telescope at Moore's Bay, Antarctica", [PoS(ICRC2021)1190](https://doi.org/10.22323/1.395.1190)
+* Ice-Cube-Gen2 collaboration, "IceCube-Gen2: The Window to the Extreme Universe", [J.Phys.G 48 (2021) 6, 060501](https://doi.org/10.1088/1361-6471/abbd48), [arXiv:2008.04323](https://arxiv.org/abs/2008.04323)
+* C. Welling et al., "Reconstructing non-repeating radio pulses with Information Field Theory", [JCAP 04 (2021) 071](https://doi.org/10.1088/1475-7516/2021/04/071), [arXiv:2102.00258](https://arxiv.org/abs/2102.00258)
+* C. Glaser, S. Barwick, "An improved trigger for Askaryan radio detectors", [JINST 16 (2021) 05, T05001](https://doi.org/10.1088/1748-0221/16/05/T05001), [arXiv:2011.12997](https://arxiv.org/abs/2011.12997)
+* RNO-G collaboration, "Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)", [JINST 16 (2021) 03, P03025](https://doi.org/10.1088/1748-0221/16/03/P03025) [arXiv:2010.12279](https://arxiv.org/abs/2010.12279)
+* ARIANNA collaboration, "Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole", [JINST 15 (2020) 09, P09039](https://doi.org/10.1088/1748-0221/15/09/P09039), [arXiv:2006.03027](https://arxiv.org/abs/2006.03027)
+
+
+
+%prep
+%autosetup -n nuradiomc-2.1.8
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-nuradiomc -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.8-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..b933046
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+f28484639c31082c758eeebd72db60fb nuradiomc-2.1.8.tar.gz