summaryrefslogtreecommitdiff
path: root/python-onnx-simplifier.spec
blob: 8fd9072a51e1a727bb70cd5048ba49cca499d61f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
%global _empty_manifest_terminate_build 0
Name:		python-onnx-simplifier
Version:	0.4.24
Release:	1
Summary:	Simplify your ONNX model
License:	Apache License v2.0
URL:		https://github.com/daquexian/onnx-simplifier
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/a4/42/899654fae8596260e151375e2b6862e01583853a0b0c135478d59d2a891f/onnx-simplifier-0.4.24.tar.gz

Requires:	python3-onnx
Requires:	python3-rich

%description
# ONNX Simplifier

[![PyPI version](https://img.shields.io/pypi/v/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI license](https://img.shields.io/pypi/l/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/daquexian/onnx-simplifier/pulls)

_ONNX is great, but sometimes too complicated._

## Background

One day I wanted to export the following simple reshape operation to ONNX:

```python
import torch


class JustReshape(torch.nn.Module):
    def __init__(self):
        super(JustReshape, self).__init__()

    def forward(self, x):
        return x.view((x.shape[0], x.shape[1], x.shape[3], x.shape[2]))


net = JustReshape()
model_name = 'just_reshape.onnx'
dummy_input = torch.randn(2, 3, 4, 5)
torch.onnx.export(net, dummy_input, model_name, input_names=['input'], output_names=['output'])
```

The input shape in this model is static, so what I expected is

![simple_reshape](imgs/simple_reshape.png)

However, I got the following complicated model instead:

![complicated_reshape](imgs/complicated_reshape.png)

## Our solution

ONNX Simplifier is presented to simplify the ONNX model. It infers the whole computation graph
and then replaces the redundant operators with their constant outputs (a.k.a. constant folding).

### Web version

We have published ONNX Simplifier on [convertmodel.com](https://www.convertmodel.com/#input=onnx&output=onnx). It works out of the box and **doesn't need any installation**. Note that it runs in the browser locally and your model is completely safe.

### Python version


```
pip3 install -U pip && pip3 install onnxsim
```

Then

```
onnxsim input_onnx_model output_onnx_model
```

For more advanced features, try the following command for help message

```
onnxsim -h
```

## Demonstration

An overall comparison between
[a complicated model](https://github.com/JDAI-CV/DNNLibrary/issues/17#issuecomment-455934190)
and its simplified version:

![Comparison between old model and new model](imgs/comparison.png)

## In-script workflow

If you would like to embed ONNX simplifier python package in another script, it is just that simple.

```python
import onnx
from onnxsim import simplify

# load your predefined ONNX model
model = onnx.load(filename)

# convert model
model_simp, check = simplify(model)

assert check, "Simplified ONNX model could not be validated"

# use model_simp as a standard ONNX model object
```

You can see more details of the API in [onnxsim/onnx_simplifier.py](onnxsim/onnx_simplifier.py)

## Projects Using ONNX Simplifier

* [MXNet](https://mxnet.apache.org/versions/1.9.1/api/python/docs/tutorials/deploy/export/onnx.html#Simplify-the-exported-ONNX-model)
* [MMDetection](https://github.com/open-mmlab/mmdetection)
* [YOLOv5](https://github.com/ultralytics/yolov5)
* [ncnn](https://github.com/Tencent/ncnn)
* ...

## Chat

We created a Chinese QQ group for ONNX!

ONNX QQ Group (Chinese): 1021964010, verification code: nndab. Welcome to join!

For English users, I'm active on the [ONNX Slack](https://github.com/onnx/onnx#discuss). You can find and chat with me (daquexian) there.


%package -n python3-onnx-simplifier
Summary:	Simplify your ONNX model
Provides:	python-onnx-simplifier
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-onnx-simplifier
# ONNX Simplifier

[![PyPI version](https://img.shields.io/pypi/v/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI license](https://img.shields.io/pypi/l/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/daquexian/onnx-simplifier/pulls)

_ONNX is great, but sometimes too complicated._

## Background

One day I wanted to export the following simple reshape operation to ONNX:

```python
import torch


class JustReshape(torch.nn.Module):
    def __init__(self):
        super(JustReshape, self).__init__()

    def forward(self, x):
        return x.view((x.shape[0], x.shape[1], x.shape[3], x.shape[2]))


net = JustReshape()
model_name = 'just_reshape.onnx'
dummy_input = torch.randn(2, 3, 4, 5)
torch.onnx.export(net, dummy_input, model_name, input_names=['input'], output_names=['output'])
```

The input shape in this model is static, so what I expected is

![simple_reshape](imgs/simple_reshape.png)

However, I got the following complicated model instead:

![complicated_reshape](imgs/complicated_reshape.png)

## Our solution

ONNX Simplifier is presented to simplify the ONNX model. It infers the whole computation graph
and then replaces the redundant operators with their constant outputs (a.k.a. constant folding).

### Web version

We have published ONNX Simplifier on [convertmodel.com](https://www.convertmodel.com/#input=onnx&output=onnx). It works out of the box and **doesn't need any installation**. Note that it runs in the browser locally and your model is completely safe.

### Python version


```
pip3 install -U pip && pip3 install onnxsim
```

Then

```
onnxsim input_onnx_model output_onnx_model
```

For more advanced features, try the following command for help message

```
onnxsim -h
```

## Demonstration

An overall comparison between
[a complicated model](https://github.com/JDAI-CV/DNNLibrary/issues/17#issuecomment-455934190)
and its simplified version:

![Comparison between old model and new model](imgs/comparison.png)

## In-script workflow

If you would like to embed ONNX simplifier python package in another script, it is just that simple.

```python
import onnx
from onnxsim import simplify

# load your predefined ONNX model
model = onnx.load(filename)

# convert model
model_simp, check = simplify(model)

assert check, "Simplified ONNX model could not be validated"

# use model_simp as a standard ONNX model object
```

You can see more details of the API in [onnxsim/onnx_simplifier.py](onnxsim/onnx_simplifier.py)

## Projects Using ONNX Simplifier

* [MXNet](https://mxnet.apache.org/versions/1.9.1/api/python/docs/tutorials/deploy/export/onnx.html#Simplify-the-exported-ONNX-model)
* [MMDetection](https://github.com/open-mmlab/mmdetection)
* [YOLOv5](https://github.com/ultralytics/yolov5)
* [ncnn](https://github.com/Tencent/ncnn)
* ...

## Chat

We created a Chinese QQ group for ONNX!

ONNX QQ Group (Chinese): 1021964010, verification code: nndab. Welcome to join!

For English users, I'm active on the [ONNX Slack](https://github.com/onnx/onnx#discuss). You can find and chat with me (daquexian) there.


%package help
Summary:	Development documents and examples for onnx-simplifier
Provides:	python3-onnx-simplifier-doc
%description help
# ONNX Simplifier

[![PyPI version](https://img.shields.io/pypi/v/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PyPI license](https://img.shields.io/pypi/l/onnx-simplifier.svg)](https://pypi.python.org/pypi/onnx-simplifier/)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/daquexian/onnx-simplifier/pulls)

_ONNX is great, but sometimes too complicated._

## Background

One day I wanted to export the following simple reshape operation to ONNX:

```python
import torch


class JustReshape(torch.nn.Module):
    def __init__(self):
        super(JustReshape, self).__init__()

    def forward(self, x):
        return x.view((x.shape[0], x.shape[1], x.shape[3], x.shape[2]))


net = JustReshape()
model_name = 'just_reshape.onnx'
dummy_input = torch.randn(2, 3, 4, 5)
torch.onnx.export(net, dummy_input, model_name, input_names=['input'], output_names=['output'])
```

The input shape in this model is static, so what I expected is

![simple_reshape](imgs/simple_reshape.png)

However, I got the following complicated model instead:

![complicated_reshape](imgs/complicated_reshape.png)

## Our solution

ONNX Simplifier is presented to simplify the ONNX model. It infers the whole computation graph
and then replaces the redundant operators with their constant outputs (a.k.a. constant folding).

### Web version

We have published ONNX Simplifier on [convertmodel.com](https://www.convertmodel.com/#input=onnx&output=onnx). It works out of the box and **doesn't need any installation**. Note that it runs in the browser locally and your model is completely safe.

### Python version


```
pip3 install -U pip && pip3 install onnxsim
```

Then

```
onnxsim input_onnx_model output_onnx_model
```

For more advanced features, try the following command for help message

```
onnxsim -h
```

## Demonstration

An overall comparison between
[a complicated model](https://github.com/JDAI-CV/DNNLibrary/issues/17#issuecomment-455934190)
and its simplified version:

![Comparison between old model and new model](imgs/comparison.png)

## In-script workflow

If you would like to embed ONNX simplifier python package in another script, it is just that simple.

```python
import onnx
from onnxsim import simplify

# load your predefined ONNX model
model = onnx.load(filename)

# convert model
model_simp, check = simplify(model)

assert check, "Simplified ONNX model could not be validated"

# use model_simp as a standard ONNX model object
```

You can see more details of the API in [onnxsim/onnx_simplifier.py](onnxsim/onnx_simplifier.py)

## Projects Using ONNX Simplifier

* [MXNet](https://mxnet.apache.org/versions/1.9.1/api/python/docs/tutorials/deploy/export/onnx.html#Simplify-the-exported-ONNX-model)
* [MMDetection](https://github.com/open-mmlab/mmdetection)
* [YOLOv5](https://github.com/ultralytics/yolov5)
* [ncnn](https://github.com/Tencent/ncnn)
* ...

## Chat

We created a Chinese QQ group for ONNX!

ONNX QQ Group (Chinese): 1021964010, verification code: nndab. Welcome to join!

For English users, I'm active on the [ONNX Slack](https://github.com/onnx/onnx#discuss). You can find and chat with me (daquexian) there.


%prep
%autosetup -n onnx-simplifier-0.4.24

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-onnx-simplifier -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.24-1
- Package Spec generated