summaryrefslogtreecommitdiff
path: root/python-onnx.spec
blob: 01b66c752b86cd2e43d71c772c0493aac3138bf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
%global _empty_manifest_terminate_build 0
Name:		python-onnx
Version:	1.13.1
Release:	1
Summary:	Open Neural Network Exchange
License:	Apache License v2.0
URL:		https://github.com/onnx/onnx
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/56/b5/f5889d518276061f999d7cda5714f288b1718cbbc3f538e943822626eead/onnx-1.13.1.tar.gz

Requires:	python3-numpy
Requires:	python3-protobuf
Requires:	python3-typing-extensions
Requires:	python3-clang-format
Requires:	python3-flake8
Requires:	python3-mypy
Requires:	python3-types-protobuf
Requires:	python3-black
Requires:	python3-isort[colors]

%description
<!--- SPDX-License-Identifier: Apache-2.0 -->

<p align="center"><img width="40%" src="https://github.com/onnx/onnx/raw/main/docs/onnx-horizontal-color.png" /></p>


[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/Windows-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=5&branchName=main)
[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/Linux-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=7&branchName=main)
[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/MacOS-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=6&branchName=main)
[![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/3313/badge)](https://bestpractices.coreinfrastructure.org/projects/3313)

[Open Neural Network Exchange (ONNX)](https://onnx.ai) is an open ecosystem that empowers AI developers
to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard
data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is [widely supported](http://onnx.ai/supported-tools) and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

# Use ONNX
* [Documentation of ONNX Python Package](https://onnx.ai/onnx/)
* [Tutorials for creating ONNX models](https://github.com/onnx/tutorials).
* [Pre-trained ONNX models](https://github.com/onnx/models)

# Learn about the ONNX spec
* [Overview](docs/Overview.md)
* [ONNX intermediate representation spec](docs/IR.md)
* [Versioning principles of the spec](docs/Versioning.md)
* [Operators documentation](docs/Operators.md) (development version)
* [Operators documentation](https://onnx.ai/onnx/operators/index.html) (latest release)
* [Python API Overview](docs/PythonAPIOverview.md)

# Programming utilities for working with ONNX Graphs
* [Shape and Type Inference](docs/ShapeInference.md)
* [Graph Optimization](https://github.com/onnx/optimizer)
* [Opset Version Conversion](docs/VersionConverter.md)

# Contribute
ONNX is a [community project](community/readme.md). We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the [Special Interest Groups](community/sigs.md) and [Working Groups](community/working-groups.md) to shape the future of ONNX.

Check out our [contribution guide](docs/CONTRIBUTING.md) to get started.

If you think some operator should be added to ONNX specification, please read
[this document](docs/AddNewOp.md).

# Discuss
We encourage you to open [Issues](https://github.com/onnx/onnx/issues), or use [Slack](https://lfaifoundation.slack.com/) (If you have not joined yet, please use this [link](https://join.slack.com/t/lfaifoundation/shared_invite/zt-o65errpw-gMTbwNr7FnNbVXNVFkmyNA) to join the group) for more real-time discussion.

# Follow Us
Stay up to date with the latest ONNX news. [[Facebook](https://www.facebook.com/onnxai/)] [[Twitter](https://twitter.com/onnxai)]


# Installation

## Official Python packages
ONNX released packages are published in PyPi.
```
pip install onnx
```

[Weekly packages](https://test.pypi.org/project/onnx-weekly/) are published in test pypi to enable experimentation and early testing.

## vcpkg packages
onnx is in the maintenance list of [vcpkg](https://github.com/microsoft/vcpkg), you can easily use vcpkg to build and install it.
```
git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx
```

## Conda packages
A binary build of ONNX is available from [Conda](https://conda.io), in [conda-forge](https://conda-forge.org/):
```
conda install -c conda-forge onnx
```


## Build ONNX from Source
Before building from source uninstall any existing versions of onnx `pip uninstall onnx`.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++11 or higher versions.

Generally speaking, you need to install [protobuf C/C++ libraries and tools](https://github.com/protocolbuffers/protobuf) before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF".  For example, you may need to run the following command:

Linux:
```bash
export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
```
Windows:
```bat
set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
```

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with \*.dll/\*.so/\*.dylib. Static libraries are files ending with \*.a/\*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.


### Windows
If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio.  It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:
```bat
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release
```
Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

```bat
set PATH=<protobuf_install_dir>/bin;%PATH%
```

Please note: if your protobuf_install_dir contains spaces, **do not** add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.
```bat
set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>
```

Then you can build ONNX as:
```
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```

### Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.0.0. Please note that old protoc versions might not work with `CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON`.

Ubuntu 18.04 (and newer) users may choose to install protobuf via
```bash
apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler
```
In this case, it is required to add `-DONNX_USE_PROTOBUF_SHARED_LIBS=ON` to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

<details>
  <summary> Installing Protobuf from source </summary>

  Debian/Ubuntu:
  ```bash
    git clone https://github.com/protocolbuffers/protobuf.git
    cd protobuf
    git checkout v3.20.2
    git submodule update --init --recursive
    mkdir build_source && cd build_source
    cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
    make -j$(nproc)
    make install
  ```

  CentOS/RHEL/Fedora:
  ```bash
    git clone https://github.com/protocolbuffers/protobuf.git
    cd protobuf
    git checkout v3.20.2
    git submodule update --init --recursive
    mkdir build_source && cd build_source
    cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
    make -j$(nproc)
    make install
  ```

  Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

  Once build is successful, update PATH to include protobuf paths.

</details>


Then you can build ONNX as:
```
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```

### Mac

```
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install
```

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:
```
git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```


## Verify Installation
After installation, run

```
python -c "import onnx"
```

to verify it works.


## Common Build Options
For full list refer to CMakeLists.txt
**Environment variables**
* `USE_MSVC_STATIC_RUNTIME` should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.
**Default**: USE_MSVC_STATIC_RUNTIME=0

* `DEBUG` should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the [CMakeLists file](CMakeLists.txt) and append a letter `d` at the end of the package name lines. For example, `NAMES protobuf-lite` would become `NAMES protobuf-lited`.
**Default**: Debug=0

**CMake variables**
* `ONNX_USE_PROTOBUF_SHARED_LIBS` should be ON or OFF.
**Default**: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0
`ONNX_USE_PROTOBUF_SHARED_LIBS` determines how onnx links to protobuf libraries.
    - When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described [here](https://github.com/protocolbuffers/protobuf/blob/master/cmake/README.md#dlls-vs-static-linking), Protobuf_USE_STATIC_LIBS will be set to OFF and `USE_MSVC_STATIC_RUNTIME` must be 0.
    - When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and `USE_MSVC_STATIC_RUNTIME` can be 0 or 1.

* `ONNX_USE_LITE_PROTO` should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf.
**Default**: ONNX_USE_LITE_PROTO=OFF

* `ONNX_WERROR` should be ON or OFF. When set to ON warnings are treated as errors.
**Default**: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.


## Common Errors
* Note: the `import onnx` command does not work from the source checkout directory; in this case you'll see `ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'`. Change into another directory to fix this error.

* If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

* If you run into any issues while building ONNX from source, and your error message reads, "Could not find pythonXX.lib", ensure that you have consistent Python versions for common commands, such as `python` and `pip`. Clean all existing build files and rebuild ONNX again.

# Testing

ONNX uses [pytest](https://docs.pytest.org) as test driver. In order to run tests, you will first need to install pytest:

```
pip install pytest nbval
```

After installing pytest, use the following command to run tests.

```
pytest
```

# Development

Check out the [contributor guide](docs/CONTRIBUTING.md) for instructions.

# License

[Apache License v2.0](LICENSE)

# Code of Conduct

[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)


%package -n python3-onnx
Summary:	Open Neural Network Exchange
Provides:	python-onnx
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
BuildRequires:	python3-cffi
BuildRequires:	gcc
BuildRequires:	gdb
%description -n python3-onnx
<!--- SPDX-License-Identifier: Apache-2.0 -->

<p align="center"><img width="40%" src="https://github.com/onnx/onnx/raw/main/docs/onnx-horizontal-color.png" /></p>


[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/Windows-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=5&branchName=main)
[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/Linux-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=7&branchName=main)
[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/MacOS-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=6&branchName=main)
[![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/3313/badge)](https://bestpractices.coreinfrastructure.org/projects/3313)

[Open Neural Network Exchange (ONNX)](https://onnx.ai) is an open ecosystem that empowers AI developers
to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard
data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is [widely supported](http://onnx.ai/supported-tools) and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

# Use ONNX
* [Documentation of ONNX Python Package](https://onnx.ai/onnx/)
* [Tutorials for creating ONNX models](https://github.com/onnx/tutorials).
* [Pre-trained ONNX models](https://github.com/onnx/models)

# Learn about the ONNX spec
* [Overview](docs/Overview.md)
* [ONNX intermediate representation spec](docs/IR.md)
* [Versioning principles of the spec](docs/Versioning.md)
* [Operators documentation](docs/Operators.md) (development version)
* [Operators documentation](https://onnx.ai/onnx/operators/index.html) (latest release)
* [Python API Overview](docs/PythonAPIOverview.md)

# Programming utilities for working with ONNX Graphs
* [Shape and Type Inference](docs/ShapeInference.md)
* [Graph Optimization](https://github.com/onnx/optimizer)
* [Opset Version Conversion](docs/VersionConverter.md)

# Contribute
ONNX is a [community project](community/readme.md). We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the [Special Interest Groups](community/sigs.md) and [Working Groups](community/working-groups.md) to shape the future of ONNX.

Check out our [contribution guide](docs/CONTRIBUTING.md) to get started.

If you think some operator should be added to ONNX specification, please read
[this document](docs/AddNewOp.md).

# Discuss
We encourage you to open [Issues](https://github.com/onnx/onnx/issues), or use [Slack](https://lfaifoundation.slack.com/) (If you have not joined yet, please use this [link](https://join.slack.com/t/lfaifoundation/shared_invite/zt-o65errpw-gMTbwNr7FnNbVXNVFkmyNA) to join the group) for more real-time discussion.

# Follow Us
Stay up to date with the latest ONNX news. [[Facebook](https://www.facebook.com/onnxai/)] [[Twitter](https://twitter.com/onnxai)]


# Installation

## Official Python packages
ONNX released packages are published in PyPi.
```
pip install onnx
```

[Weekly packages](https://test.pypi.org/project/onnx-weekly/) are published in test pypi to enable experimentation and early testing.

## vcpkg packages
onnx is in the maintenance list of [vcpkg](https://github.com/microsoft/vcpkg), you can easily use vcpkg to build and install it.
```
git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx
```

## Conda packages
A binary build of ONNX is available from [Conda](https://conda.io), in [conda-forge](https://conda-forge.org/):
```
conda install -c conda-forge onnx
```


## Build ONNX from Source
Before building from source uninstall any existing versions of onnx `pip uninstall onnx`.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++11 or higher versions.

Generally speaking, you need to install [protobuf C/C++ libraries and tools](https://github.com/protocolbuffers/protobuf) before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF".  For example, you may need to run the following command:

Linux:
```bash
export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
```
Windows:
```bat
set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
```

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with \*.dll/\*.so/\*.dylib. Static libraries are files ending with \*.a/\*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.


### Windows
If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio.  It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:
```bat
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release
```
Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

```bat
set PATH=<protobuf_install_dir>/bin;%PATH%
```

Please note: if your protobuf_install_dir contains spaces, **do not** add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.
```bat
set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>
```

Then you can build ONNX as:
```
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```

### Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.0.0. Please note that old protoc versions might not work with `CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON`.

Ubuntu 18.04 (and newer) users may choose to install protobuf via
```bash
apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler
```
In this case, it is required to add `-DONNX_USE_PROTOBUF_SHARED_LIBS=ON` to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

<details>
  <summary> Installing Protobuf from source </summary>

  Debian/Ubuntu:
  ```bash
    git clone https://github.com/protocolbuffers/protobuf.git
    cd protobuf
    git checkout v3.20.2
    git submodule update --init --recursive
    mkdir build_source && cd build_source
    cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
    make -j$(nproc)
    make install
  ```

  CentOS/RHEL/Fedora:
  ```bash
    git clone https://github.com/protocolbuffers/protobuf.git
    cd protobuf
    git checkout v3.20.2
    git submodule update --init --recursive
    mkdir build_source && cd build_source
    cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
    make -j$(nproc)
    make install
  ```

  Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

  Once build is successful, update PATH to include protobuf paths.

</details>


Then you can build ONNX as:
```
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```

### Mac

```
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install
```

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:
```
git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```


## Verify Installation
After installation, run

```
python -c "import onnx"
```

to verify it works.


## Common Build Options
For full list refer to CMakeLists.txt
**Environment variables**
* `USE_MSVC_STATIC_RUNTIME` should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.
**Default**: USE_MSVC_STATIC_RUNTIME=0

* `DEBUG` should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the [CMakeLists file](CMakeLists.txt) and append a letter `d` at the end of the package name lines. For example, `NAMES protobuf-lite` would become `NAMES protobuf-lited`.
**Default**: Debug=0

**CMake variables**
* `ONNX_USE_PROTOBUF_SHARED_LIBS` should be ON or OFF.
**Default**: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0
`ONNX_USE_PROTOBUF_SHARED_LIBS` determines how onnx links to protobuf libraries.
    - When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described [here](https://github.com/protocolbuffers/protobuf/blob/master/cmake/README.md#dlls-vs-static-linking), Protobuf_USE_STATIC_LIBS will be set to OFF and `USE_MSVC_STATIC_RUNTIME` must be 0.
    - When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and `USE_MSVC_STATIC_RUNTIME` can be 0 or 1.

* `ONNX_USE_LITE_PROTO` should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf.
**Default**: ONNX_USE_LITE_PROTO=OFF

* `ONNX_WERROR` should be ON or OFF. When set to ON warnings are treated as errors.
**Default**: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.


## Common Errors
* Note: the `import onnx` command does not work from the source checkout directory; in this case you'll see `ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'`. Change into another directory to fix this error.

* If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

* If you run into any issues while building ONNX from source, and your error message reads, "Could not find pythonXX.lib", ensure that you have consistent Python versions for common commands, such as `python` and `pip`. Clean all existing build files and rebuild ONNX again.

# Testing

ONNX uses [pytest](https://docs.pytest.org) as test driver. In order to run tests, you will first need to install pytest:

```
pip install pytest nbval
```

After installing pytest, use the following command to run tests.

```
pytest
```

# Development

Check out the [contributor guide](docs/CONTRIBUTING.md) for instructions.

# License

[Apache License v2.0](LICENSE)

# Code of Conduct

[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)


%package help
Summary:	Development documents and examples for onnx
Provides:	python3-onnx-doc
%description help
<!--- SPDX-License-Identifier: Apache-2.0 -->

<p align="center"><img width="40%" src="https://github.com/onnx/onnx/raw/main/docs/onnx-horizontal-color.png" /></p>


[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/Windows-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=5&branchName=main)
[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/Linux-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=7&branchName=main)
[![Build Status](https://dev.azure.com/onnx-pipelines/onnx/_apis/build/status/MacOS-CI?branchName=main)](https://dev.azure.com/onnx-pipelines/onnx/_build/latest?definitionId=6&branchName=main)
[![CII Best Practices](https://bestpractices.coreinfrastructure.org/projects/3313/badge)](https://bestpractices.coreinfrastructure.org/projects/3313)

[Open Neural Network Exchange (ONNX)](https://onnx.ai) is an open ecosystem that empowers AI developers
to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard
data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is [widely supported](http://onnx.ai/supported-tools) and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

# Use ONNX
* [Documentation of ONNX Python Package](https://onnx.ai/onnx/)
* [Tutorials for creating ONNX models](https://github.com/onnx/tutorials).
* [Pre-trained ONNX models](https://github.com/onnx/models)

# Learn about the ONNX spec
* [Overview](docs/Overview.md)
* [ONNX intermediate representation spec](docs/IR.md)
* [Versioning principles of the spec](docs/Versioning.md)
* [Operators documentation](docs/Operators.md) (development version)
* [Operators documentation](https://onnx.ai/onnx/operators/index.html) (latest release)
* [Python API Overview](docs/PythonAPIOverview.md)

# Programming utilities for working with ONNX Graphs
* [Shape and Type Inference](docs/ShapeInference.md)
* [Graph Optimization](https://github.com/onnx/optimizer)
* [Opset Version Conversion](docs/VersionConverter.md)

# Contribute
ONNX is a [community project](community/readme.md). We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the [Special Interest Groups](community/sigs.md) and [Working Groups](community/working-groups.md) to shape the future of ONNX.

Check out our [contribution guide](docs/CONTRIBUTING.md) to get started.

If you think some operator should be added to ONNX specification, please read
[this document](docs/AddNewOp.md).

# Discuss
We encourage you to open [Issues](https://github.com/onnx/onnx/issues), or use [Slack](https://lfaifoundation.slack.com/) (If you have not joined yet, please use this [link](https://join.slack.com/t/lfaifoundation/shared_invite/zt-o65errpw-gMTbwNr7FnNbVXNVFkmyNA) to join the group) for more real-time discussion.

# Follow Us
Stay up to date with the latest ONNX news. [[Facebook](https://www.facebook.com/onnxai/)] [[Twitter](https://twitter.com/onnxai)]


# Installation

## Official Python packages
ONNX released packages are published in PyPi.
```
pip install onnx
```

[Weekly packages](https://test.pypi.org/project/onnx-weekly/) are published in test pypi to enable experimentation and early testing.

## vcpkg packages
onnx is in the maintenance list of [vcpkg](https://github.com/microsoft/vcpkg), you can easily use vcpkg to build and install it.
```
git clone https://github.com/microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.bat # For powershell
./bootstrap-vcpkg.sh # For bash
./vcpkg install onnx
```

## Conda packages
A binary build of ONNX is available from [Conda](https://conda.io), in [conda-forge](https://conda-forge.org/):
```
conda install -c conda-forge onnx
```


## Build ONNX from Source
Before building from source uninstall any existing versions of onnx `pip uninstall onnx`.

c++17 or higher C++ compiler version is required to build ONNX from source on Windows. For other platforms, please use C++11 or higher versions.

Generally speaking, you need to install [protobuf C/C++ libraries and tools](https://github.com/protocolbuffers/protobuf) before proceeding forward. Then depending on how you installed protobuf, you need to set environment variable CMAKE_ARGS to "-DONNX_USE_PROTOBUF_SHARED_LIBS=ON" or "-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF".  For example, you may need to run the following command:

Linux:
```bash
export CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
```
Windows:
```bat
set CMAKE_ARGS="-DONNX_USE_PROTOBUF_SHARED_LIBS=ON"
```

The ON/OFF depends on what kind of protobuf library you have. Shared libraries are files ending with \*.dll/\*.so/\*.dylib. Static libraries are files ending with \*.a/\*.lib. This option depends on how you get your protobuf library and how it was built. And it is default OFF. You don't need to run the commands above if you'd prefer to use a static protobuf library.


### Windows
If you are building ONNX from source, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL, but ONNX expects it to be a static library. Building protobuf locally also lets you control the version of protobuf. The tested and recommended version is 3.20.2.

The instructions in this README assume you are using Visual Studio.  It is recommended that you run all the commands from a shell started from "x64 Native Tools Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent while building protobuf as well as ONNX.

You can get protobuf by running the following commands:
```bat
git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout v3.20.2
cd cmake
cmake -G "Visual Studio 16 2019" -A x64 -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir> -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_SHARED_LIBS=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF .
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release
```
Then it will be built as a static library and installed to <protobuf_install_dir>. Please add the bin directory(which contains protoc.exe) to your PATH.

```bat
set PATH=<protobuf_install_dir>/bin;%PATH%
```

Please note: if your protobuf_install_dir contains spaces, **do not** add quotation marks around it.

Alternative: if you don't want to change your PATH, you can set ONNX_PROTOC_EXECUTABLE instead.
```bat
set CMAKE_ARGS=-DONNX_PROTOC_EXECUTABLE=<full_path_to_protoc.exe>
```

Then you can build ONNX as:
```
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```

### Linux

First, you need to install protobuf. The minimum Protobuf compiler (protoc) version required by ONNX is 3.0.0. Please note that old protoc versions might not work with `CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON`.

Ubuntu 18.04 (and newer) users may choose to install protobuf via
```bash
apt-get install python3-pip python3-dev libprotobuf-dev protobuf-compiler
```
In this case, it is required to add `-DONNX_USE_PROTOBUF_SHARED_LIBS=ON` to CMAKE_ARGS in the ONNX build step.

A more general way is to build and install it from source. See the instructions below for more details.

<details>
  <summary> Installing Protobuf from source </summary>

  Debian/Ubuntu:
  ```bash
    git clone https://github.com/protocolbuffers/protobuf.git
    cd protobuf
    git checkout v3.20.2
    git submodule update --init --recursive
    mkdir build_source && cd build_source
    cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
    make -j$(nproc)
    make install
  ```

  CentOS/RHEL/Fedora:
  ```bash
    git clone https://github.com/protocolbuffers/protobuf.git
    cd protobuf
    git checkout v3.20.2
    git submodule update --init --recursive
    mkdir build_source && cd build_source
    cmake ../cmake  -DCMAKE_INSTALL_LIBDIR=lib64 -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_INSTALL_SYSCONFDIR=/etc -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
    make -j$(nproc)
    make install
  ```

  Here "-DCMAKE_POSITION_INDEPENDENT_CODE=ON" is crucial. By default static libraries are built without "-fPIC" flag, they are not position independent code. But shared libraries must be position independent code. Python C/C++ extensions(like ONNX) are shared libraries. So if a static library was not built with "-fPIC", it can't be linked to such a shared library.

  Once build is successful, update PATH to include protobuf paths.

</details>


Then you can build ONNX as:
```
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
# Optional: prefer lite proto
export CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```

### Mac

```
export NUM_CORES=`sysctl -n hw.ncpu`
brew update
brew install autoconf && brew install automake
wget https://github.com/protocolbuffers/protobuf/releases/download/v3.20.2/protobuf-cpp-3.20.2.tar.gz
tar -xvf protobuf-cpp-3.20.2.tar.gz
cd protobuf-3.20.2
mkdir build_source && cd build_source
cmake ../cmake -Dprotobuf_BUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON -Dprotobuf_BUILD_TESTS=OFF -DCMAKE_BUILD_TYPE=Release
make -j${NUM_CORES}
make install
```

Once build is successful, update PATH to include protobuf paths.

Then you can build ONNX as:
```
git clone --recursive https://github.com/onnx/onnx.git
cd onnx
# Optional: prefer lite proto
set CMAKE_ARGS=-DONNX_USE_LITE_PROTO=ON
pip install -e .
```


## Verify Installation
After installation, run

```
python -c "import onnx"
```

to verify it works.


## Common Build Options
For full list refer to CMakeLists.txt
**Environment variables**
* `USE_MSVC_STATIC_RUNTIME` should be 1 or 0, not ON or OFF. When set to 1 onnx links statically to runtime library.
**Default**: USE_MSVC_STATIC_RUNTIME=0

* `DEBUG` should be 0 or 1. When set to 1 onnx is built in debug mode. or debug versions of the dependencies, you need to open the [CMakeLists file](CMakeLists.txt) and append a letter `d` at the end of the package name lines. For example, `NAMES protobuf-lite` would become `NAMES protobuf-lited`.
**Default**: Debug=0

**CMake variables**
* `ONNX_USE_PROTOBUF_SHARED_LIBS` should be ON or OFF.
**Default**: ONNX_USE_PROTOBUF_SHARED_LIBS=OFF USE_MSVC_STATIC_RUNTIME=0
`ONNX_USE_PROTOBUF_SHARED_LIBS` determines how onnx links to protobuf libraries.
    - When set to ON - onnx will dynamically link to protobuf shared libs, PROTOBUF_USE_DLLS will be defined as described [here](https://github.com/protocolbuffers/protobuf/blob/master/cmake/README.md#dlls-vs-static-linking), Protobuf_USE_STATIC_LIBS will be set to OFF and `USE_MSVC_STATIC_RUNTIME` must be 0.
    - When set to OFF - onnx will link statically to protobuf, and Protobuf_USE_STATIC_LIBS will be set to ON (to force the use of the static libraries) and `USE_MSVC_STATIC_RUNTIME` can be 0 or 1.

* `ONNX_USE_LITE_PROTO` should be ON or OFF. When set to ON onnx uses lite protobuf instead of full protobuf.
**Default**: ONNX_USE_LITE_PROTO=OFF

* `ONNX_WERROR` should be ON or OFF. When set to ON warnings are treated as errors.
**Default**: ONNX_WERROR=OFF in local builds, ON in CI and release pipelines.


## Common Errors
* Note: the `import onnx` command does not work from the source checkout directory; in this case you'll see `ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'`. Change into another directory to fix this error.

* If you run into any issues while building Protobuf as a static library, please ensure that shared Protobuf libraries, like libprotobuf, are not installed on your device or in the conda environment. If these shared libraries exist, either remove them to build Protobuf from source as a static library, or skip the Protobuf build from source to use the shared version directly.

* If you run into any issues while building ONNX from source, and your error message reads, "Could not find pythonXX.lib", ensure that you have consistent Python versions for common commands, such as `python` and `pip`. Clean all existing build files and rebuild ONNX again.

# Testing

ONNX uses [pytest](https://docs.pytest.org) as test driver. In order to run tests, you will first need to install pytest:

```
pip install pytest nbval
```

After installing pytest, use the following command to run tests.

```
pytest
```

# Development

Check out the [contributor guide](docs/CONTRIBUTING.md) for instructions.

# License

[Apache License v2.0](LICENSE)

# Code of Conduct

[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)


%prep
%autosetup -n onnx-1.13.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-onnx -f filelist.lst
%dir %{python3_sitearch}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 1.13.1-1
- Package Spec generated