1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
%global _empty_manifest_terminate_build 0
Name: python-onnxoptimizer
Version: 0.3.13
Release: 1
Summary: Open Neural Network Exchange
License: Apache License v2.0
URL: https://github.com/onnx/optimizer
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/68/bd/e8671229c2f1f99eb02961cac51e55ca64dbbe0d62791b6743cc8b9950b1/onnxoptimizer-0.3.13.tar.gz
Requires: python3-onnx
Requires: python3-mypy
%description
<!--- SPDX-License-Identifier: Apache-2.0 -->
# ONNX Optimizer
[](https://pypi.python.org/pypi/onnxoptimizer/)
[](https://pypi.python.org/pypi/onnxoptimizer/)
[](https://github.com/onnx/optimizer/pulls)
## Introduction
ONNX provides a C++ library for performing arbitrary optimizations on ONNX models, as well as a growing list of prepackaged optimization passes.
The primary motivation is to share work between the many ONNX backend implementations. Not all possible optimizations can be directly implemented on ONNX graphs - some will need additional backend-specific information - but many can, and our aim is to provide all such passes along with ONNX so that they can be re-used with a single function call.
You may be interested in invoking the provided passes, or in implementing new ones (or both).
## Installation
You can install onnxoptimizer from PyPI:
```bash
pip3 install onnxoptimizer
```
Note that you may need to upgrade your pip first if you have trouble:
```bash
pip3 install -U pip
```
If you want to build from source:
```bash
git clone --recursive https://github.com/onnx/optimizer onnxoptimizer
cd onnxoptimizer
pip3 install -e .
```
Note that you need to install protobuf before building from source.
## Command-line API
Now you can use command-line api in terminal instead of python script.
```
python -m onnxoptimizer input_model.onnx output_model.onnx
```
Arguments list is following:
```
# python3 -m onnxoptimizer -h
usage: python -m onnxoptimizer input_model.onnx output_model.onnx
onnxoptimizer command-line api
optional arguments:
-h, --help show this help message and exit
--print_all_passes print all available passes
--print_fuse_elimination_passes
print all fuse and elimination passes
-p [PASSES ...], --passes [PASSES ...]
list of optimization passes name, if no set, fuse_and_elimination_passes will be used
--fixed_point fixed point
```
## Roadmap
* More built-in pass
* Separate graph rewriting and constant folding (or a pure graph rewriting mode, see [issue #9](https://github.com/onnx/optimizer/issues/9) for the details)
## Relevant tools
* [onnx-simplifier](https://github.com/daquexian/onnx-simplifier): A handy and popular tool based on onnxoptimizer
* [convertmodel.com](https://convertmodel.com/#outputFormat=onnx&inputFormat=onnx): onnx optimizer compiled as WebAssembly so that it can be used out-of-the-box
## Code of Conduct
[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)
%package -n python3-onnxoptimizer
Summary: Open Neural Network Exchange
Provides: python-onnxoptimizer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-onnxoptimizer
<!--- SPDX-License-Identifier: Apache-2.0 -->
# ONNX Optimizer
[](https://pypi.python.org/pypi/onnxoptimizer/)
[](https://pypi.python.org/pypi/onnxoptimizer/)
[](https://github.com/onnx/optimizer/pulls)
## Introduction
ONNX provides a C++ library for performing arbitrary optimizations on ONNX models, as well as a growing list of prepackaged optimization passes.
The primary motivation is to share work between the many ONNX backend implementations. Not all possible optimizations can be directly implemented on ONNX graphs - some will need additional backend-specific information - but many can, and our aim is to provide all such passes along with ONNX so that they can be re-used with a single function call.
You may be interested in invoking the provided passes, or in implementing new ones (or both).
## Installation
You can install onnxoptimizer from PyPI:
```bash
pip3 install onnxoptimizer
```
Note that you may need to upgrade your pip first if you have trouble:
```bash
pip3 install -U pip
```
If you want to build from source:
```bash
git clone --recursive https://github.com/onnx/optimizer onnxoptimizer
cd onnxoptimizer
pip3 install -e .
```
Note that you need to install protobuf before building from source.
## Command-line API
Now you can use command-line api in terminal instead of python script.
```
python -m onnxoptimizer input_model.onnx output_model.onnx
```
Arguments list is following:
```
# python3 -m onnxoptimizer -h
usage: python -m onnxoptimizer input_model.onnx output_model.onnx
onnxoptimizer command-line api
optional arguments:
-h, --help show this help message and exit
--print_all_passes print all available passes
--print_fuse_elimination_passes
print all fuse and elimination passes
-p [PASSES ...], --passes [PASSES ...]
list of optimization passes name, if no set, fuse_and_elimination_passes will be used
--fixed_point fixed point
```
## Roadmap
* More built-in pass
* Separate graph rewriting and constant folding (or a pure graph rewriting mode, see [issue #9](https://github.com/onnx/optimizer/issues/9) for the details)
## Relevant tools
* [onnx-simplifier](https://github.com/daquexian/onnx-simplifier): A handy and popular tool based on onnxoptimizer
* [convertmodel.com](https://convertmodel.com/#outputFormat=onnx&inputFormat=onnx): onnx optimizer compiled as WebAssembly so that it can be used out-of-the-box
## Code of Conduct
[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)
%package help
Summary: Development documents and examples for onnxoptimizer
Provides: python3-onnxoptimizer-doc
%description help
<!--- SPDX-License-Identifier: Apache-2.0 -->
# ONNX Optimizer
[](https://pypi.python.org/pypi/onnxoptimizer/)
[](https://pypi.python.org/pypi/onnxoptimizer/)
[](https://github.com/onnx/optimizer/pulls)
## Introduction
ONNX provides a C++ library for performing arbitrary optimizations on ONNX models, as well as a growing list of prepackaged optimization passes.
The primary motivation is to share work between the many ONNX backend implementations. Not all possible optimizations can be directly implemented on ONNX graphs - some will need additional backend-specific information - but many can, and our aim is to provide all such passes along with ONNX so that they can be re-used with a single function call.
You may be interested in invoking the provided passes, or in implementing new ones (or both).
## Installation
You can install onnxoptimizer from PyPI:
```bash
pip3 install onnxoptimizer
```
Note that you may need to upgrade your pip first if you have trouble:
```bash
pip3 install -U pip
```
If you want to build from source:
```bash
git clone --recursive https://github.com/onnx/optimizer onnxoptimizer
cd onnxoptimizer
pip3 install -e .
```
Note that you need to install protobuf before building from source.
## Command-line API
Now you can use command-line api in terminal instead of python script.
```
python -m onnxoptimizer input_model.onnx output_model.onnx
```
Arguments list is following:
```
# python3 -m onnxoptimizer -h
usage: python -m onnxoptimizer input_model.onnx output_model.onnx
onnxoptimizer command-line api
optional arguments:
-h, --help show this help message and exit
--print_all_passes print all available passes
--print_fuse_elimination_passes
print all fuse and elimination passes
-p [PASSES ...], --passes [PASSES ...]
list of optimization passes name, if no set, fuse_and_elimination_passes will be used
--fixed_point fixed point
```
## Roadmap
* More built-in pass
* Separate graph rewriting and constant folding (or a pure graph rewriting mode, see [issue #9](https://github.com/onnx/optimizer/issues/9) for the details)
## Relevant tools
* [onnx-simplifier](https://github.com/daquexian/onnx-simplifier): A handy and popular tool based on onnxoptimizer
* [convertmodel.com](https://convertmodel.com/#outputFormat=onnx&inputFormat=onnx): onnx optimizer compiled as WebAssembly so that it can be used out-of-the-box
## Code of Conduct
[ONNX Open Source Code of Conduct](https://onnx.ai/codeofconduct.html)
%prep
%autosetup -n onnxoptimizer-0.3.13
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-onnxoptimizer -f filelist.lst
%dir %{python3_sitearch}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.13-1
- Package Spec generated
|