summaryrefslogtreecommitdiff
path: root/python-openai.spec
blob: 1021a4737da25ab170eb54c15b30397ed8c00237 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
%global _empty_manifest_terminate_build 0
Name:		python-openai
Version:	0.27.4
Release:	1
Summary:	Python client library for the OpenAI API
License:	MIT License
URL:		https://github.com/openai/openai-python
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/d6/f0/e80cef4ff77f100ebb70b51a9a43a3dcd989a938a7c6ba299d987fd867e9/openai-0.27.4.tar.gz
BuildArch:	noarch

Requires:	python3-requests
Requires:	python3-tqdm
Requires:	python3-aiohttp
Requires:	python3-typing-extensions
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-pandas-stubs
Requires:	python3-openpyxl
Requires:	python3-black
Requires:	python3-pytest
Requires:	python3-pytest-asyncio
Requires:	python3-pytest-mock
Requires:	python3-scikit-learn
Requires:	python3-tenacity
Requires:	python3-matplotlib
Requires:	python3-plotly
Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-pandas
Requires:	python3-pandas-stubs
Requires:	python3-openpyxl
Requires:	python3-wandb
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-pandas-stubs
Requires:	python3-openpyxl

%description
# OpenAI Python Library

The OpenAI Python library provides convenient access to the OpenAI API
from applications written in the Python language. It includes a
pre-defined set of classes for API resources that initialize
themselves dynamically from API responses which makes it compatible
with a wide range of versions of the OpenAI API.

You can find usage examples for the OpenAI Python library in our [API reference](https://beta.openai.com/docs/api-reference?lang=python) and the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/).

## Installation

You don't need this source code unless you want to modify the package. If you just
want to use the package, just run:

```sh
pip install --upgrade openai
```

Install from source with:

```sh
python setup.py install
```

### Optional dependencies

Install dependencies for [`openai.embeddings_utils`](openai/embeddings_utils.py):

```sh
pip install openai[embeddings]
```

Install support for [Weights & Biases](https://wandb.me/openai-docs):

```
pip install openai[wandb]
```

Data libraries like `numpy` and `pandas` are not installed by default due to their size. They’re needed for some functionality of this library, but generally not for talking to the API. If you encounter a `MissingDependencyError`, install them with:

```sh
pip install openai[datalib]
````

## Usage

The library needs to be configured with your account's secret key which is available on the [website](https://platform.openai.com/account/api-keys). Either set it as the `OPENAI_API_KEY` environment variable before using the library:

```bash
export OPENAI_API_KEY='sk-...'
```

Or set `openai.api_key` to its value:

```python
import openai
openai.api_key = "sk-..."

# list models
models = openai.Model.list()

# print the first model's id
print(models.data[0].id)

# create a completion
completion = openai.Completion.create(model="ada", prompt="Hello world")

# print the completion
print(completion.choices[0].text)
```


### Params
All endpoints have a `.create` method that supports a `request_timeout` param.  This param takes a `Union[float, Tuple[float, float]]` and will raise an `openai.error.Timeout` error if the request exceeds that time in seconds (See: https://requests.readthedocs.io/en/latest/user/quickstart/#timeouts).

### Microsoft Azure Endpoints

In order to use the library with Microsoft Azure endpoints, you need to set the `api_type`, `api_base` and `api_version` in addition to the `api_key`. The `api_type` must be set to 'azure' and the others correspond to the properties of your endpoint.
In addition, the deployment name must be passed as the engine parameter.

```python
import openai
openai.api_type = "azure"
openai.api_key = "..."
openai.api_base = "https://example-endpoint.openai.azure.com"
openai.api_version = "2023-03-15-preview"

# create a completion
completion = openai.Completion.create(deployment_id="deployment-name", prompt="Hello world")

# print the completion
print(completion.choices[0].text)
```

Please note that for the moment, the Microsoft Azure endpoints can only be used for completion, embedding, and fine-tuning operations.
For a detailed example of how to use fine-tuning and other operations using Azure endpoints, please check out the following Jupyter notebooks:
* [Using Azure completions](https://github.com/openai/openai-cookbook/tree/main/examples/azure/completions.ipynb)
* [Using Azure fine-tuning](https://github.com/openai/openai-cookbook/tree/main/examples/azure/finetuning.ipynb)
* [Using Azure embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/azure/embeddings.ipynb)

### Microsoft Azure Active Directory Authentication

In order to use Microsoft Active Directory to authenticate to your Azure endpoint, you need to set the `api_type` to "azure_ad" and pass the acquired credential token to `api_key`. The rest of the parameters need to be set as specified in the previous section.


```python
from azure.identity import DefaultAzureCredential
import openai

# Request credential
default_credential = DefaultAzureCredential()
token = default_credential.get_token("https://cognitiveservices.azure.com/.default")

# Setup parameters
openai.api_type = "azure_ad"
openai.api_key = token.token
openai.api_base = "https://example-endpoint.openai.azure.com/"
openai.api_version = "2023-03-15-preview"

# ...
```
### Command-line interface

This library additionally provides an `openai` command-line utility
which makes it easy to interact with the API from your terminal. Run
`openai api -h` for usage.

```sh
# list models
openai api models.list

# create a completion
openai api completions.create -m ada -p "Hello world"

# create a chat completion
openai api chat_completions.create -m gpt-3.5-turbo -g user "Hello world"

# generate images via DALL·E API
openai api image.create -p "two dogs playing chess, cartoon" -n 1
```

## Example code

Examples of how to use this Python library to accomplish various tasks can be found in the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/). It contains code examples for:

* Classification using fine-tuning
* Clustering
* Code search
* Customizing embeddings
* Question answering from a corpus of documents
* Recommendations
* Visualization of embeddings
* And more

Prior to July 2022, this OpenAI Python library hosted code examples in its examples folder, but since then all examples have been migrated to the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/).

### Chat

Conversational models such as `gpt-3.5-turbo` can be called using the chat completions endpoint.

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world!"}])
print(completion.choices[0].message.content)
```

### Embeddings

In the OpenAI Python library, an embedding represents a text string as a fixed-length vector of floating point numbers. Embeddings are designed to measure the similarity or relevance between text strings.

To get an embedding for a text string, you can use the embeddings method as follows in Python:

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

# choose text to embed
text_string = "sample text"

# choose an embedding
model_id = "text-similarity-davinci-001"

# compute the embedding of the text
embedding = openai.Embedding.create(input=text_string, model=model_id)['data'][0]['embedding']
```

An example of how to call the embeddings method is shown in this [get embeddings notebook](https://github.com/openai/openai-cookbook/blob/main/examples/Get_embeddings.ipynb).

Examples of how to use embeddings are shared in the following Jupyter notebooks:

- [Classification using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Classification_using_embeddings.ipynb)
- [Clustering using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Clustering.ipynb)
- [Code search using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Code_search.ipynb)
- [Semantic text search using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Semantic_text_search_using_embeddings.ipynb)
- [User and product embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/User_and_product_embeddings.ipynb)
- [Zero-shot classification using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Zero-shot_classification_with_embeddings.ipynb)
- [Recommendation using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Recommendation_using_embeddings.ipynb)

For more information on embeddings and the types of embeddings OpenAI offers, read the [embeddings guide](https://beta.openai.com/docs/guides/embeddings) in the OpenAI documentation.

### Fine-tuning

Fine-tuning a model on training data can both improve the results (by giving the model more examples to learn from) and reduce the cost/latency of API calls (chiefly through reducing the need to include training examples in prompts).

Examples of fine-tuning are shared in the following Jupyter notebooks:

- [Classification with fine-tuning](https://github.com/openai/openai-cookbook/blob/main/examples/Fine-tuned_classification.ipynb) (a simple notebook that shows the steps required for fine-tuning)
- Fine-tuning a model that answers questions about the 2020 Olympics
  - [Step 1: Collecting data](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-1-collect-data.ipynb)
  - [Step 2: Creating a synthetic Q&A dataset](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-2-create-qa.ipynb)
  - [Step 3: Train a fine-tuning model specialized for Q&A](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-3-train-qa.ipynb)

Sync your fine-tunes to [Weights & Biases](https://wandb.me/openai-docs) to track experiments, models, and datasets in your central dashboard with:

```bash
openai wandb sync
```

For more information on fine-tuning, read the [fine-tuning guide](https://beta.openai.com/docs/guides/fine-tuning) in the OpenAI documentation.

### Moderation

OpenAI provides a Moderation endpoint that can be used to check whether content complies with the OpenAI [content policy](https://platform.openai.com/docs/usage-policies)

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

moderation_resp = openai.Moderation.create(input="Here is some perfectly innocuous text that follows all OpenAI content policies.")
```

See the [moderation guide](https://platform.openai.com/docs/guides/moderation) for more details.

## Image generation (DALL·E)

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

image_resp = openai.Image.create(prompt="two dogs playing chess, oil painting", n=4, size="512x512")

```

## Audio transcription (Whisper)
```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose
f = open("path/to/file.mp3", "rb")
transcript = openai.Audio.transcribe("whisper-1", f)

```

## Async API

Async support is available in the API by prepending `a` to a network-bound method:

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

async def create_completion():
    completion_resp = await openai.Completion.acreate(prompt="This is a test", model="davinci")

```

To make async requests more efficient, you can pass in your own
``aiohttp.ClientSession``, but you must manually close the client session at the end 
of your program/event loop:

```python
import openai
from aiohttp import ClientSession

openai.aiosession.set(ClientSession())
# At the end of your program, close the http session
await openai.aiosession.get().close()
```

See the [usage guide](https://platform.openai.com/docs/guides/images) for more details.

## Requirements

- Python 3.7.1+

In general, we want to support the versions of Python that our
customers are using. If you run into problems with any version
issues, please let us know on our [support page](https://help.openai.com/en/).

## Credit

This library is forked from the [Stripe Python Library](https://github.com/stripe/stripe-python).


%package -n python3-openai
Summary:	Python client library for the OpenAI API
Provides:	python-openai
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-openai
# OpenAI Python Library

The OpenAI Python library provides convenient access to the OpenAI API
from applications written in the Python language. It includes a
pre-defined set of classes for API resources that initialize
themselves dynamically from API responses which makes it compatible
with a wide range of versions of the OpenAI API.

You can find usage examples for the OpenAI Python library in our [API reference](https://beta.openai.com/docs/api-reference?lang=python) and the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/).

## Installation

You don't need this source code unless you want to modify the package. If you just
want to use the package, just run:

```sh
pip install --upgrade openai
```

Install from source with:

```sh
python setup.py install
```

### Optional dependencies

Install dependencies for [`openai.embeddings_utils`](openai/embeddings_utils.py):

```sh
pip install openai[embeddings]
```

Install support for [Weights & Biases](https://wandb.me/openai-docs):

```
pip install openai[wandb]
```

Data libraries like `numpy` and `pandas` are not installed by default due to their size. They’re needed for some functionality of this library, but generally not for talking to the API. If you encounter a `MissingDependencyError`, install them with:

```sh
pip install openai[datalib]
````

## Usage

The library needs to be configured with your account's secret key which is available on the [website](https://platform.openai.com/account/api-keys). Either set it as the `OPENAI_API_KEY` environment variable before using the library:

```bash
export OPENAI_API_KEY='sk-...'
```

Or set `openai.api_key` to its value:

```python
import openai
openai.api_key = "sk-..."

# list models
models = openai.Model.list()

# print the first model's id
print(models.data[0].id)

# create a completion
completion = openai.Completion.create(model="ada", prompt="Hello world")

# print the completion
print(completion.choices[0].text)
```


### Params
All endpoints have a `.create` method that supports a `request_timeout` param.  This param takes a `Union[float, Tuple[float, float]]` and will raise an `openai.error.Timeout` error if the request exceeds that time in seconds (See: https://requests.readthedocs.io/en/latest/user/quickstart/#timeouts).

### Microsoft Azure Endpoints

In order to use the library with Microsoft Azure endpoints, you need to set the `api_type`, `api_base` and `api_version` in addition to the `api_key`. The `api_type` must be set to 'azure' and the others correspond to the properties of your endpoint.
In addition, the deployment name must be passed as the engine parameter.

```python
import openai
openai.api_type = "azure"
openai.api_key = "..."
openai.api_base = "https://example-endpoint.openai.azure.com"
openai.api_version = "2023-03-15-preview"

# create a completion
completion = openai.Completion.create(deployment_id="deployment-name", prompt="Hello world")

# print the completion
print(completion.choices[0].text)
```

Please note that for the moment, the Microsoft Azure endpoints can only be used for completion, embedding, and fine-tuning operations.
For a detailed example of how to use fine-tuning and other operations using Azure endpoints, please check out the following Jupyter notebooks:
* [Using Azure completions](https://github.com/openai/openai-cookbook/tree/main/examples/azure/completions.ipynb)
* [Using Azure fine-tuning](https://github.com/openai/openai-cookbook/tree/main/examples/azure/finetuning.ipynb)
* [Using Azure embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/azure/embeddings.ipynb)

### Microsoft Azure Active Directory Authentication

In order to use Microsoft Active Directory to authenticate to your Azure endpoint, you need to set the `api_type` to "azure_ad" and pass the acquired credential token to `api_key`. The rest of the parameters need to be set as specified in the previous section.


```python
from azure.identity import DefaultAzureCredential
import openai

# Request credential
default_credential = DefaultAzureCredential()
token = default_credential.get_token("https://cognitiveservices.azure.com/.default")

# Setup parameters
openai.api_type = "azure_ad"
openai.api_key = token.token
openai.api_base = "https://example-endpoint.openai.azure.com/"
openai.api_version = "2023-03-15-preview"

# ...
```
### Command-line interface

This library additionally provides an `openai` command-line utility
which makes it easy to interact with the API from your terminal. Run
`openai api -h` for usage.

```sh
# list models
openai api models.list

# create a completion
openai api completions.create -m ada -p "Hello world"

# create a chat completion
openai api chat_completions.create -m gpt-3.5-turbo -g user "Hello world"

# generate images via DALL·E API
openai api image.create -p "two dogs playing chess, cartoon" -n 1
```

## Example code

Examples of how to use this Python library to accomplish various tasks can be found in the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/). It contains code examples for:

* Classification using fine-tuning
* Clustering
* Code search
* Customizing embeddings
* Question answering from a corpus of documents
* Recommendations
* Visualization of embeddings
* And more

Prior to July 2022, this OpenAI Python library hosted code examples in its examples folder, but since then all examples have been migrated to the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/).

### Chat

Conversational models such as `gpt-3.5-turbo` can be called using the chat completions endpoint.

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world!"}])
print(completion.choices[0].message.content)
```

### Embeddings

In the OpenAI Python library, an embedding represents a text string as a fixed-length vector of floating point numbers. Embeddings are designed to measure the similarity or relevance between text strings.

To get an embedding for a text string, you can use the embeddings method as follows in Python:

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

# choose text to embed
text_string = "sample text"

# choose an embedding
model_id = "text-similarity-davinci-001"

# compute the embedding of the text
embedding = openai.Embedding.create(input=text_string, model=model_id)['data'][0]['embedding']
```

An example of how to call the embeddings method is shown in this [get embeddings notebook](https://github.com/openai/openai-cookbook/blob/main/examples/Get_embeddings.ipynb).

Examples of how to use embeddings are shared in the following Jupyter notebooks:

- [Classification using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Classification_using_embeddings.ipynb)
- [Clustering using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Clustering.ipynb)
- [Code search using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Code_search.ipynb)
- [Semantic text search using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Semantic_text_search_using_embeddings.ipynb)
- [User and product embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/User_and_product_embeddings.ipynb)
- [Zero-shot classification using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Zero-shot_classification_with_embeddings.ipynb)
- [Recommendation using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Recommendation_using_embeddings.ipynb)

For more information on embeddings and the types of embeddings OpenAI offers, read the [embeddings guide](https://beta.openai.com/docs/guides/embeddings) in the OpenAI documentation.

### Fine-tuning

Fine-tuning a model on training data can both improve the results (by giving the model more examples to learn from) and reduce the cost/latency of API calls (chiefly through reducing the need to include training examples in prompts).

Examples of fine-tuning are shared in the following Jupyter notebooks:

- [Classification with fine-tuning](https://github.com/openai/openai-cookbook/blob/main/examples/Fine-tuned_classification.ipynb) (a simple notebook that shows the steps required for fine-tuning)
- Fine-tuning a model that answers questions about the 2020 Olympics
  - [Step 1: Collecting data](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-1-collect-data.ipynb)
  - [Step 2: Creating a synthetic Q&A dataset](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-2-create-qa.ipynb)
  - [Step 3: Train a fine-tuning model specialized for Q&A](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-3-train-qa.ipynb)

Sync your fine-tunes to [Weights & Biases](https://wandb.me/openai-docs) to track experiments, models, and datasets in your central dashboard with:

```bash
openai wandb sync
```

For more information on fine-tuning, read the [fine-tuning guide](https://beta.openai.com/docs/guides/fine-tuning) in the OpenAI documentation.

### Moderation

OpenAI provides a Moderation endpoint that can be used to check whether content complies with the OpenAI [content policy](https://platform.openai.com/docs/usage-policies)

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

moderation_resp = openai.Moderation.create(input="Here is some perfectly innocuous text that follows all OpenAI content policies.")
```

See the [moderation guide](https://platform.openai.com/docs/guides/moderation) for more details.

## Image generation (DALL·E)

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

image_resp = openai.Image.create(prompt="two dogs playing chess, oil painting", n=4, size="512x512")

```

## Audio transcription (Whisper)
```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose
f = open("path/to/file.mp3", "rb")
transcript = openai.Audio.transcribe("whisper-1", f)

```

## Async API

Async support is available in the API by prepending `a` to a network-bound method:

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

async def create_completion():
    completion_resp = await openai.Completion.acreate(prompt="This is a test", model="davinci")

```

To make async requests more efficient, you can pass in your own
``aiohttp.ClientSession``, but you must manually close the client session at the end 
of your program/event loop:

```python
import openai
from aiohttp import ClientSession

openai.aiosession.set(ClientSession())
# At the end of your program, close the http session
await openai.aiosession.get().close()
```

See the [usage guide](https://platform.openai.com/docs/guides/images) for more details.

## Requirements

- Python 3.7.1+

In general, we want to support the versions of Python that our
customers are using. If you run into problems with any version
issues, please let us know on our [support page](https://help.openai.com/en/).

## Credit

This library is forked from the [Stripe Python Library](https://github.com/stripe/stripe-python).


%package help
Summary:	Development documents and examples for openai
Provides:	python3-openai-doc
%description help
# OpenAI Python Library

The OpenAI Python library provides convenient access to the OpenAI API
from applications written in the Python language. It includes a
pre-defined set of classes for API resources that initialize
themselves dynamically from API responses which makes it compatible
with a wide range of versions of the OpenAI API.

You can find usage examples for the OpenAI Python library in our [API reference](https://beta.openai.com/docs/api-reference?lang=python) and the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/).

## Installation

You don't need this source code unless you want to modify the package. If you just
want to use the package, just run:

```sh
pip install --upgrade openai
```

Install from source with:

```sh
python setup.py install
```

### Optional dependencies

Install dependencies for [`openai.embeddings_utils`](openai/embeddings_utils.py):

```sh
pip install openai[embeddings]
```

Install support for [Weights & Biases](https://wandb.me/openai-docs):

```
pip install openai[wandb]
```

Data libraries like `numpy` and `pandas` are not installed by default due to their size. They’re needed for some functionality of this library, but generally not for talking to the API. If you encounter a `MissingDependencyError`, install them with:

```sh
pip install openai[datalib]
````

## Usage

The library needs to be configured with your account's secret key which is available on the [website](https://platform.openai.com/account/api-keys). Either set it as the `OPENAI_API_KEY` environment variable before using the library:

```bash
export OPENAI_API_KEY='sk-...'
```

Or set `openai.api_key` to its value:

```python
import openai
openai.api_key = "sk-..."

# list models
models = openai.Model.list()

# print the first model's id
print(models.data[0].id)

# create a completion
completion = openai.Completion.create(model="ada", prompt="Hello world")

# print the completion
print(completion.choices[0].text)
```


### Params
All endpoints have a `.create` method that supports a `request_timeout` param.  This param takes a `Union[float, Tuple[float, float]]` and will raise an `openai.error.Timeout` error if the request exceeds that time in seconds (See: https://requests.readthedocs.io/en/latest/user/quickstart/#timeouts).

### Microsoft Azure Endpoints

In order to use the library with Microsoft Azure endpoints, you need to set the `api_type`, `api_base` and `api_version` in addition to the `api_key`. The `api_type` must be set to 'azure' and the others correspond to the properties of your endpoint.
In addition, the deployment name must be passed as the engine parameter.

```python
import openai
openai.api_type = "azure"
openai.api_key = "..."
openai.api_base = "https://example-endpoint.openai.azure.com"
openai.api_version = "2023-03-15-preview"

# create a completion
completion = openai.Completion.create(deployment_id="deployment-name", prompt="Hello world")

# print the completion
print(completion.choices[0].text)
```

Please note that for the moment, the Microsoft Azure endpoints can only be used for completion, embedding, and fine-tuning operations.
For a detailed example of how to use fine-tuning and other operations using Azure endpoints, please check out the following Jupyter notebooks:
* [Using Azure completions](https://github.com/openai/openai-cookbook/tree/main/examples/azure/completions.ipynb)
* [Using Azure fine-tuning](https://github.com/openai/openai-cookbook/tree/main/examples/azure/finetuning.ipynb)
* [Using Azure embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/azure/embeddings.ipynb)

### Microsoft Azure Active Directory Authentication

In order to use Microsoft Active Directory to authenticate to your Azure endpoint, you need to set the `api_type` to "azure_ad" and pass the acquired credential token to `api_key`. The rest of the parameters need to be set as specified in the previous section.


```python
from azure.identity import DefaultAzureCredential
import openai

# Request credential
default_credential = DefaultAzureCredential()
token = default_credential.get_token("https://cognitiveservices.azure.com/.default")

# Setup parameters
openai.api_type = "azure_ad"
openai.api_key = token.token
openai.api_base = "https://example-endpoint.openai.azure.com/"
openai.api_version = "2023-03-15-preview"

# ...
```
### Command-line interface

This library additionally provides an `openai` command-line utility
which makes it easy to interact with the API from your terminal. Run
`openai api -h` for usage.

```sh
# list models
openai api models.list

# create a completion
openai api completions.create -m ada -p "Hello world"

# create a chat completion
openai api chat_completions.create -m gpt-3.5-turbo -g user "Hello world"

# generate images via DALL·E API
openai api image.create -p "two dogs playing chess, cartoon" -n 1
```

## Example code

Examples of how to use this Python library to accomplish various tasks can be found in the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/). It contains code examples for:

* Classification using fine-tuning
* Clustering
* Code search
* Customizing embeddings
* Question answering from a corpus of documents
* Recommendations
* Visualization of embeddings
* And more

Prior to July 2022, this OpenAI Python library hosted code examples in its examples folder, but since then all examples have been migrated to the [OpenAI Cookbook](https://github.com/openai/openai-cookbook/).

### Chat

Conversational models such as `gpt-3.5-turbo` can be called using the chat completions endpoint.

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hello world!"}])
print(completion.choices[0].message.content)
```

### Embeddings

In the OpenAI Python library, an embedding represents a text string as a fixed-length vector of floating point numbers. Embeddings are designed to measure the similarity or relevance between text strings.

To get an embedding for a text string, you can use the embeddings method as follows in Python:

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

# choose text to embed
text_string = "sample text"

# choose an embedding
model_id = "text-similarity-davinci-001"

# compute the embedding of the text
embedding = openai.Embedding.create(input=text_string, model=model_id)['data'][0]['embedding']
```

An example of how to call the embeddings method is shown in this [get embeddings notebook](https://github.com/openai/openai-cookbook/blob/main/examples/Get_embeddings.ipynb).

Examples of how to use embeddings are shared in the following Jupyter notebooks:

- [Classification using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Classification_using_embeddings.ipynb)
- [Clustering using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Clustering.ipynb)
- [Code search using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Code_search.ipynb)
- [Semantic text search using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Semantic_text_search_using_embeddings.ipynb)
- [User and product embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/User_and_product_embeddings.ipynb)
- [Zero-shot classification using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Zero-shot_classification_with_embeddings.ipynb)
- [Recommendation using embeddings](https://github.com/openai/openai-cookbook/blob/main/examples/Recommendation_using_embeddings.ipynb)

For more information on embeddings and the types of embeddings OpenAI offers, read the [embeddings guide](https://beta.openai.com/docs/guides/embeddings) in the OpenAI documentation.

### Fine-tuning

Fine-tuning a model on training data can both improve the results (by giving the model more examples to learn from) and reduce the cost/latency of API calls (chiefly through reducing the need to include training examples in prompts).

Examples of fine-tuning are shared in the following Jupyter notebooks:

- [Classification with fine-tuning](https://github.com/openai/openai-cookbook/blob/main/examples/Fine-tuned_classification.ipynb) (a simple notebook that shows the steps required for fine-tuning)
- Fine-tuning a model that answers questions about the 2020 Olympics
  - [Step 1: Collecting data](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-1-collect-data.ipynb)
  - [Step 2: Creating a synthetic Q&A dataset](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-2-create-qa.ipynb)
  - [Step 3: Train a fine-tuning model specialized for Q&A](https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-3-train-qa.ipynb)

Sync your fine-tunes to [Weights & Biases](https://wandb.me/openai-docs) to track experiments, models, and datasets in your central dashboard with:

```bash
openai wandb sync
```

For more information on fine-tuning, read the [fine-tuning guide](https://beta.openai.com/docs/guides/fine-tuning) in the OpenAI documentation.

### Moderation

OpenAI provides a Moderation endpoint that can be used to check whether content complies with the OpenAI [content policy](https://platform.openai.com/docs/usage-policies)

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

moderation_resp = openai.Moderation.create(input="Here is some perfectly innocuous text that follows all OpenAI content policies.")
```

See the [moderation guide](https://platform.openai.com/docs/guides/moderation) for more details.

## Image generation (DALL·E)

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

image_resp = openai.Image.create(prompt="two dogs playing chess, oil painting", n=4, size="512x512")

```

## Audio transcription (Whisper)
```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose
f = open("path/to/file.mp3", "rb")
transcript = openai.Audio.transcribe("whisper-1", f)

```

## Async API

Async support is available in the API by prepending `a` to a network-bound method:

```python
import openai
openai.api_key = "sk-..."  # supply your API key however you choose

async def create_completion():
    completion_resp = await openai.Completion.acreate(prompt="This is a test", model="davinci")

```

To make async requests more efficient, you can pass in your own
``aiohttp.ClientSession``, but you must manually close the client session at the end 
of your program/event loop:

```python
import openai
from aiohttp import ClientSession

openai.aiosession.set(ClientSession())
# At the end of your program, close the http session
await openai.aiosession.get().close()
```

See the [usage guide](https://platform.openai.com/docs/guides/images) for more details.

## Requirements

- Python 3.7.1+

In general, we want to support the versions of Python that our
customers are using. If you run into problems with any version
issues, please let us know on our [support page](https://help.openai.com/en/).

## Credit

This library is forked from the [Stripe Python Library](https://github.com/stripe/stripe-python).


%prep
%autosetup -n openai-0.27.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-openai -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 0.27.4-1
- Package Spec generated