summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-opentsne.spec97
-rw-r--r--sources1
3 files changed, 99 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..72249a7 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/openTSNE-0.7.1.tar.gz
diff --git a/python-opentsne.spec b/python-opentsne.spec
new file mode 100644
index 0000000..9455ee1
--- /dev/null
+++ b/python-opentsne.spec
@@ -0,0 +1,97 @@
+%global _empty_manifest_terminate_build 0
+Name: python-openTSNE
+Version: 0.7.1
+Release: 1
+Summary: Extensible, parallel implementations of t-SNE
+License: BSD-3-Clause
+URL: https://github.com/pavlin-policar/openTSNE
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6f/95/c27857a6bbcc1827e0062140a96c860b16bd38ca9a784e81216610adc0e9/openTSNE-0.7.1.tar.gz
+
+Requires: python3-numpy
+Requires: python3-scikit-learn
+Requires: python3-scipy
+Requires: python3-hnswlib
+Requires: python3-pynndescent
+
+%description
+|Build Status| |ReadTheDocs Badge| |License Badge|
+openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1]_, a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2]_, massive speed improvements [3]_ [4]_ [5]_, enabling t-SNE to scale to millions of data points and various tricks to improve global alignment of the resulting visualizations [6]_.
+ A visualization of 44,808 single cell transcriptomes obtained from the mouse retina [7]_ embedded using the multiscale kernel trick to better preserve the global aligment of the clusters.
+- `Documentation <http://opentsne.readthedocs.io>`__
+- `User Guide and Tutorial <https://opentsne.readthedocs.io/en/latest/tsne_algorithm.html>`__
+- Examples: `basic <https://opentsne.readthedocs.io/en/latest/examples/01_simple_usage/01_simple_usage.html>`__, `advanced <https://opentsne.readthedocs.io/en/latest/examples/02_advanced_usage/02_advanced_usage.html>`__, `preserving global alignment <https://opentsne.readthedocs.io/en/latest/examples/03_preserving_global_structure/03_preserving_global_structure.html>`__, `embedding large data sets <https://opentsne.readthedocs.io/en/latest/examples/04_large_data_sets/04_large_data_sets.html>`__
+- `Speed benchmarks <https://opentsne.readthedocs.io/en/latest/benchmarks.html>`__
+
+%package -n python3-openTSNE
+Summary: Extensible, parallel implementations of t-SNE
+Provides: python-openTSNE
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+BuildRequires: python3-cffi
+BuildRequires: gcc
+BuildRequires: gdb
+%description -n python3-openTSNE
+|Build Status| |ReadTheDocs Badge| |License Badge|
+openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1]_, a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2]_, massive speed improvements [3]_ [4]_ [5]_, enabling t-SNE to scale to millions of data points and various tricks to improve global alignment of the resulting visualizations [6]_.
+ A visualization of 44,808 single cell transcriptomes obtained from the mouse retina [7]_ embedded using the multiscale kernel trick to better preserve the global aligment of the clusters.
+- `Documentation <http://opentsne.readthedocs.io>`__
+- `User Guide and Tutorial <https://opentsne.readthedocs.io/en/latest/tsne_algorithm.html>`__
+- Examples: `basic <https://opentsne.readthedocs.io/en/latest/examples/01_simple_usage/01_simple_usage.html>`__, `advanced <https://opentsne.readthedocs.io/en/latest/examples/02_advanced_usage/02_advanced_usage.html>`__, `preserving global alignment <https://opentsne.readthedocs.io/en/latest/examples/03_preserving_global_structure/03_preserving_global_structure.html>`__, `embedding large data sets <https://opentsne.readthedocs.io/en/latest/examples/04_large_data_sets/04_large_data_sets.html>`__
+- `Speed benchmarks <https://opentsne.readthedocs.io/en/latest/benchmarks.html>`__
+
+%package help
+Summary: Development documents and examples for openTSNE
+Provides: python3-openTSNE-doc
+%description help
+|Build Status| |ReadTheDocs Badge| |License Badge|
+openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1]_, a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2]_, massive speed improvements [3]_ [4]_ [5]_, enabling t-SNE to scale to millions of data points and various tricks to improve global alignment of the resulting visualizations [6]_.
+ A visualization of 44,808 single cell transcriptomes obtained from the mouse retina [7]_ embedded using the multiscale kernel trick to better preserve the global aligment of the clusters.
+- `Documentation <http://opentsne.readthedocs.io>`__
+- `User Guide and Tutorial <https://opentsne.readthedocs.io/en/latest/tsne_algorithm.html>`__
+- Examples: `basic <https://opentsne.readthedocs.io/en/latest/examples/01_simple_usage/01_simple_usage.html>`__, `advanced <https://opentsne.readthedocs.io/en/latest/examples/02_advanced_usage/02_advanced_usage.html>`__, `preserving global alignment <https://opentsne.readthedocs.io/en/latest/examples/03_preserving_global_structure/03_preserving_global_structure.html>`__, `embedding large data sets <https://opentsne.readthedocs.io/en/latest/examples/04_large_data_sets/04_large_data_sets.html>`__
+- `Speed benchmarks <https://opentsne.readthedocs.io/en/latest/benchmarks.html>`__
+
+%prep
+%autosetup -n openTSNE-0.7.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-openTSNE -f filelist.lst
+%dir %{python3_sitearch}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..276b5d6
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+0a973b23c77c95615693b32e4c2bc48a openTSNE-0.7.1.tar.gz