summaryrefslogtreecommitdiff
path: root/python-pennylane.spec
blob: 00bf7eba0ed7b0beb70e22598513900e8c87a078 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
%global _empty_manifest_terminate_build 0
Name:		python-PennyLane
Version:	0.29.1
Release:	1
Summary:	PennyLane is a Python quantum machine learning library by Xanadu Inc.
License:	Apache License 2.0
URL:		https://github.com/XanaduAI/pennylane
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/0e/e8/6d3c7fa27743c198073db9a62ed57ed9b3a767cda49b220c6b08405f6f27/PennyLane-0.29.1.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-networkx
Requires:	python3-retworkx
Requires:	python3-autograd
Requires:	python3-toml
Requires:	python3-appdirs
Requires:	python3-semantic-version
Requires:	python3-autoray
Requires:	python3-cachetools
Requires:	python3-pennylane-lightning
Requires:	python3-requests
Requires:	python3-cvxpy
Requires:	python3-cvxopt

%description
<p align="center">
  <!-- Tests (GitHub actions) -->
  <a href="https://github.com/PennyLaneAI/pennylane/actions?query=workflow%3ATests">
    <img src="https://img.shields.io/github/actions/workflow/status/PennyLaneAI/PennyLane/tests.yml?branch=master&style=flat-square" />
  </a>
  <!-- CodeCov -->
  <a href="https://codecov.io/gh/PennyLaneAI/pennylane">
    <img src="https://img.shields.io/codecov/c/github/PennyLaneAI/pennylane/master.svg?logo=codecov&style=flat-square" />
  </a>
  <!-- ReadTheDocs -->
  <a href="https://docs.pennylane.ai/en/latest">
    <img src="https://readthedocs.com/projects/xanaduai-pennylane/badge/?version=latest&style=flat-square" />
  </a>
  <!-- PyPI -->
  <a href="https://pypi.org/project/PennyLane">
    <img src="https://img.shields.io/pypi/v/PennyLane.svg?style=flat-square" />
  </a>
  <!-- Forum -->
  <a href="https://discuss.pennylane.ai">
    <img src="https://img.shields.io/discourse/https/discuss.pennylane.ai/posts.svg?logo=discourse&style=flat-square" />
  </a>
  <!-- License -->
  <a href="https://www.apache.org/licenses/LICENSE-2.0">
    <img src="https://img.shields.io/pypi/l/PennyLane.svg?logo=apache&style=flat-square" />
  </a>
</p>

<p align="center">
  <a href="https://pennylane.ai">PennyLane</a> is a cross-platform Python library for <a
  href="https://en.wikipedia.org/wiki/Differentiable_programming">differentiable
  programming</a> of quantum computers.
</p>

<p align="center">
  <strong>Train a quantum computer the same way as a neural network.</strong>
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/header.png#gh-light-mode-only" width="700px">
    <!--
    Use a relative import for the dark mode image. When loading on PyPI, this
    will fail automatically and show nothing.
    -->
    <img src="./doc/_static/header-dark-mode.png#gh-dark-mode-only" width="700px" onerror="this.style.display='none'" alt=""/>
</p>

## Key Features

<img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/code.png" width="400px" align="right">

- *Machine learning on quantum hardware*. Connect to quantum hardware using **PyTorch**, **TensorFlow**, **JAX**, **Keras**, or **NumPy**. Build rich and flexible hybrid quantum-classical models.

- *Device-independent*. Run the same quantum circuit on different quantum backends. Install
  [plugins](https://pennylane.ai/plugins.html) to access even more devices, including **Strawberry
  Fields**, **Amazon Braket**, **IBM Q**, **Google Cirq**, **Rigetti Forest**, **Qulacs**, **Pasqal**, **Honeywell**, and more.

- *Follow the gradient*. Hardware-friendly **automatic differentiation** of quantum circuits.

- *Batteries included*. Built-in tools for **quantum machine learning**, **optimization**, and
  **quantum chemistry**. Rapidly prototype using built-in quantum simulators with
  backpropagation support.

## Installation

PennyLane requires Python version 3.8 and above. Installation of PennyLane, as well as all
dependencies, can be done using pip:

```console
python -m pip install pennylane
```

## Docker support

**Docker** support exists for building using **CPU** and **GPU** (Nvidia CUDA
11.1+) images. [See a more detailed description
here](https://pennylane.readthedocs.io/en/stable/development/guide/installation.html#docker).

## Getting started

For an introduction to quantum machine learning, guides and resources are available on
PennyLane's [quantum machine learning hub](https://pennylane.ai/qml/):

<img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/gpu_to_qpu.png" align="right" width="400px">

* [What is quantum machine learning?](https://pennylane.ai/qml/whatisqml.html)
* [QML tutorials and demos](https://pennylane.ai/qml/demonstrations.html)
* [Frequently asked questions](https://pennylane.ai/faq.html)
* [Key concepts of QML](https://pennylane.ai/qml/glossary.html)
* [QML videos](https://pennylane.ai/qml/videos.html)

You can also check out our [documentation](https://pennylane.readthedocs.io) for [quickstart
guides](https://pennylane.readthedocs.io/en/stable/introduction/pennylane.html) to using PennyLane,
and detailed developer guides on [how to write your
own](https://pennylane.readthedocs.io/en/stable/development/plugins.html) PennyLane-compatible
quantum device.

## Tutorials and demonstrations

Take a deeper dive into quantum machine learning by exploring cutting-edge algorithms on our [demonstrations
page](https://pennylane.ai/qml/demonstrations.html).

<a href="https://pennylane.ai/qml/demonstrations.html">
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/demos.png" width="900px">
</a>

All demonstrations are fully executable, and can be downloaded as Jupyter notebooks and Python
scripts.

If you would like to contribute your own demo, see our [demo submission
guide](https://pennylane.ai/qml/demos_submission.html).

## Videos

Seeing is believing! Check out [our videos](https://pennylane.ai/qml/videos.html) to learn about
PennyLane, quantum computing concepts, and more. 

<a href="https://pennylane.ai/qml/videos.html">
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/videos.png" width="900px">
</a>

## Contributing to PennyLane

We welcome contributions—simply fork the PennyLane repository, and then make a [pull
request](https://help.github.com/articles/about-pull-requests/) containing your contribution. All
contributors to PennyLane will be listed as authors on the releases. All users who contribute
significantly to the code (new plugins, new functionality, etc.) will be listed on the PennyLane
arXiv paper.

We also encourage bug reports, suggestions for new features and enhancements, and even links to cool
projects or applications built on PennyLane.

See our [contributions
page](https://github.com/PennyLaneAI/pennylane/blob/master/.github/CONTRIBUTING.md) and our
[developer hub](https://pennylane.readthedocs.io/en/stable/development/guide.html) for more
details.

## Support

- **Source Code:** https://github.com/PennyLaneAI/pennylane
- **Issue Tracker:** https://github.com/PennyLaneAI/pennylane/issues

If you are having issues, please let us know by posting the issue on our GitHub issue tracker.

We also have a [PennyLane discussion forum](https://discuss.pennylane.ai)—come join the community
and chat with the PennyLane team.

Note that we are committed to providing a friendly, safe, and welcoming environment for all.
Please read and respect the [Code of Conduct](.github/CODE_OF_CONDUCT.md).

## Authors

PennyLane is the work of [many contributors](https://github.com/PennyLaneAI/pennylane/graphs/contributors).

If you are doing research using PennyLane, please cite [our paper](https://arxiv.org/abs/1811.04968):

> Ville Bergholm et al. *PennyLane: Automatic differentiation of hybrid quantum-classical
> computations.* 2018. arXiv:1811.04968

## License

PennyLane is **free** and **open source**, released under the Apache License, Version 2.0.


%package -n python3-PennyLane
Summary:	PennyLane is a Python quantum machine learning library by Xanadu Inc.
Provides:	python-PennyLane
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-PennyLane
<p align="center">
  <!-- Tests (GitHub actions) -->
  <a href="https://github.com/PennyLaneAI/pennylane/actions?query=workflow%3ATests">
    <img src="https://img.shields.io/github/actions/workflow/status/PennyLaneAI/PennyLane/tests.yml?branch=master&style=flat-square" />
  </a>
  <!-- CodeCov -->
  <a href="https://codecov.io/gh/PennyLaneAI/pennylane">
    <img src="https://img.shields.io/codecov/c/github/PennyLaneAI/pennylane/master.svg?logo=codecov&style=flat-square" />
  </a>
  <!-- ReadTheDocs -->
  <a href="https://docs.pennylane.ai/en/latest">
    <img src="https://readthedocs.com/projects/xanaduai-pennylane/badge/?version=latest&style=flat-square" />
  </a>
  <!-- PyPI -->
  <a href="https://pypi.org/project/PennyLane">
    <img src="https://img.shields.io/pypi/v/PennyLane.svg?style=flat-square" />
  </a>
  <!-- Forum -->
  <a href="https://discuss.pennylane.ai">
    <img src="https://img.shields.io/discourse/https/discuss.pennylane.ai/posts.svg?logo=discourse&style=flat-square" />
  </a>
  <!-- License -->
  <a href="https://www.apache.org/licenses/LICENSE-2.0">
    <img src="https://img.shields.io/pypi/l/PennyLane.svg?logo=apache&style=flat-square" />
  </a>
</p>

<p align="center">
  <a href="https://pennylane.ai">PennyLane</a> is a cross-platform Python library for <a
  href="https://en.wikipedia.org/wiki/Differentiable_programming">differentiable
  programming</a> of quantum computers.
</p>

<p align="center">
  <strong>Train a quantum computer the same way as a neural network.</strong>
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/header.png#gh-light-mode-only" width="700px">
    <!--
    Use a relative import for the dark mode image. When loading on PyPI, this
    will fail automatically and show nothing.
    -->
    <img src="./doc/_static/header-dark-mode.png#gh-dark-mode-only" width="700px" onerror="this.style.display='none'" alt=""/>
</p>

## Key Features

<img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/code.png" width="400px" align="right">

- *Machine learning on quantum hardware*. Connect to quantum hardware using **PyTorch**, **TensorFlow**, **JAX**, **Keras**, or **NumPy**. Build rich and flexible hybrid quantum-classical models.

- *Device-independent*. Run the same quantum circuit on different quantum backends. Install
  [plugins](https://pennylane.ai/plugins.html) to access even more devices, including **Strawberry
  Fields**, **Amazon Braket**, **IBM Q**, **Google Cirq**, **Rigetti Forest**, **Qulacs**, **Pasqal**, **Honeywell**, and more.

- *Follow the gradient*. Hardware-friendly **automatic differentiation** of quantum circuits.

- *Batteries included*. Built-in tools for **quantum machine learning**, **optimization**, and
  **quantum chemistry**. Rapidly prototype using built-in quantum simulators with
  backpropagation support.

## Installation

PennyLane requires Python version 3.8 and above. Installation of PennyLane, as well as all
dependencies, can be done using pip:

```console
python -m pip install pennylane
```

## Docker support

**Docker** support exists for building using **CPU** and **GPU** (Nvidia CUDA
11.1+) images. [See a more detailed description
here](https://pennylane.readthedocs.io/en/stable/development/guide/installation.html#docker).

## Getting started

For an introduction to quantum machine learning, guides and resources are available on
PennyLane's [quantum machine learning hub](https://pennylane.ai/qml/):

<img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/gpu_to_qpu.png" align="right" width="400px">

* [What is quantum machine learning?](https://pennylane.ai/qml/whatisqml.html)
* [QML tutorials and demos](https://pennylane.ai/qml/demonstrations.html)
* [Frequently asked questions](https://pennylane.ai/faq.html)
* [Key concepts of QML](https://pennylane.ai/qml/glossary.html)
* [QML videos](https://pennylane.ai/qml/videos.html)

You can also check out our [documentation](https://pennylane.readthedocs.io) for [quickstart
guides](https://pennylane.readthedocs.io/en/stable/introduction/pennylane.html) to using PennyLane,
and detailed developer guides on [how to write your
own](https://pennylane.readthedocs.io/en/stable/development/plugins.html) PennyLane-compatible
quantum device.

## Tutorials and demonstrations

Take a deeper dive into quantum machine learning by exploring cutting-edge algorithms on our [demonstrations
page](https://pennylane.ai/qml/demonstrations.html).

<a href="https://pennylane.ai/qml/demonstrations.html">
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/demos.png" width="900px">
</a>

All demonstrations are fully executable, and can be downloaded as Jupyter notebooks and Python
scripts.

If you would like to contribute your own demo, see our [demo submission
guide](https://pennylane.ai/qml/demos_submission.html).

## Videos

Seeing is believing! Check out [our videos](https://pennylane.ai/qml/videos.html) to learn about
PennyLane, quantum computing concepts, and more. 

<a href="https://pennylane.ai/qml/videos.html">
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/videos.png" width="900px">
</a>

## Contributing to PennyLane

We welcome contributions—simply fork the PennyLane repository, and then make a [pull
request](https://help.github.com/articles/about-pull-requests/) containing your contribution. All
contributors to PennyLane will be listed as authors on the releases. All users who contribute
significantly to the code (new plugins, new functionality, etc.) will be listed on the PennyLane
arXiv paper.

We also encourage bug reports, suggestions for new features and enhancements, and even links to cool
projects or applications built on PennyLane.

See our [contributions
page](https://github.com/PennyLaneAI/pennylane/blob/master/.github/CONTRIBUTING.md) and our
[developer hub](https://pennylane.readthedocs.io/en/stable/development/guide.html) for more
details.

## Support

- **Source Code:** https://github.com/PennyLaneAI/pennylane
- **Issue Tracker:** https://github.com/PennyLaneAI/pennylane/issues

If you are having issues, please let us know by posting the issue on our GitHub issue tracker.

We also have a [PennyLane discussion forum](https://discuss.pennylane.ai)—come join the community
and chat with the PennyLane team.

Note that we are committed to providing a friendly, safe, and welcoming environment for all.
Please read and respect the [Code of Conduct](.github/CODE_OF_CONDUCT.md).

## Authors

PennyLane is the work of [many contributors](https://github.com/PennyLaneAI/pennylane/graphs/contributors).

If you are doing research using PennyLane, please cite [our paper](https://arxiv.org/abs/1811.04968):

> Ville Bergholm et al. *PennyLane: Automatic differentiation of hybrid quantum-classical
> computations.* 2018. arXiv:1811.04968

## License

PennyLane is **free** and **open source**, released under the Apache License, Version 2.0.


%package help
Summary:	Development documents and examples for PennyLane
Provides:	python3-PennyLane-doc
%description help
<p align="center">
  <!-- Tests (GitHub actions) -->
  <a href="https://github.com/PennyLaneAI/pennylane/actions?query=workflow%3ATests">
    <img src="https://img.shields.io/github/actions/workflow/status/PennyLaneAI/PennyLane/tests.yml?branch=master&style=flat-square" />
  </a>
  <!-- CodeCov -->
  <a href="https://codecov.io/gh/PennyLaneAI/pennylane">
    <img src="https://img.shields.io/codecov/c/github/PennyLaneAI/pennylane/master.svg?logo=codecov&style=flat-square" />
  </a>
  <!-- ReadTheDocs -->
  <a href="https://docs.pennylane.ai/en/latest">
    <img src="https://readthedocs.com/projects/xanaduai-pennylane/badge/?version=latest&style=flat-square" />
  </a>
  <!-- PyPI -->
  <a href="https://pypi.org/project/PennyLane">
    <img src="https://img.shields.io/pypi/v/PennyLane.svg?style=flat-square" />
  </a>
  <!-- Forum -->
  <a href="https://discuss.pennylane.ai">
    <img src="https://img.shields.io/discourse/https/discuss.pennylane.ai/posts.svg?logo=discourse&style=flat-square" />
  </a>
  <!-- License -->
  <a href="https://www.apache.org/licenses/LICENSE-2.0">
    <img src="https://img.shields.io/pypi/l/PennyLane.svg?logo=apache&style=flat-square" />
  </a>
</p>

<p align="center">
  <a href="https://pennylane.ai">PennyLane</a> is a cross-platform Python library for <a
  href="https://en.wikipedia.org/wiki/Differentiable_programming">differentiable
  programming</a> of quantum computers.
</p>

<p align="center">
  <strong>Train a quantum computer the same way as a neural network.</strong>
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/header.png#gh-light-mode-only" width="700px">
    <!--
    Use a relative import for the dark mode image. When loading on PyPI, this
    will fail automatically and show nothing.
    -->
    <img src="./doc/_static/header-dark-mode.png#gh-dark-mode-only" width="700px" onerror="this.style.display='none'" alt=""/>
</p>

## Key Features

<img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/code.png" width="400px" align="right">

- *Machine learning on quantum hardware*. Connect to quantum hardware using **PyTorch**, **TensorFlow**, **JAX**, **Keras**, or **NumPy**. Build rich and flexible hybrid quantum-classical models.

- *Device-independent*. Run the same quantum circuit on different quantum backends. Install
  [plugins](https://pennylane.ai/plugins.html) to access even more devices, including **Strawberry
  Fields**, **Amazon Braket**, **IBM Q**, **Google Cirq**, **Rigetti Forest**, **Qulacs**, **Pasqal**, **Honeywell**, and more.

- *Follow the gradient*. Hardware-friendly **automatic differentiation** of quantum circuits.

- *Batteries included*. Built-in tools for **quantum machine learning**, **optimization**, and
  **quantum chemistry**. Rapidly prototype using built-in quantum simulators with
  backpropagation support.

## Installation

PennyLane requires Python version 3.8 and above. Installation of PennyLane, as well as all
dependencies, can be done using pip:

```console
python -m pip install pennylane
```

## Docker support

**Docker** support exists for building using **CPU** and **GPU** (Nvidia CUDA
11.1+) images. [See a more detailed description
here](https://pennylane.readthedocs.io/en/stable/development/guide/installation.html#docker).

## Getting started

For an introduction to quantum machine learning, guides and resources are available on
PennyLane's [quantum machine learning hub](https://pennylane.ai/qml/):

<img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/gpu_to_qpu.png" align="right" width="400px">

* [What is quantum machine learning?](https://pennylane.ai/qml/whatisqml.html)
* [QML tutorials and demos](https://pennylane.ai/qml/demonstrations.html)
* [Frequently asked questions](https://pennylane.ai/faq.html)
* [Key concepts of QML](https://pennylane.ai/qml/glossary.html)
* [QML videos](https://pennylane.ai/qml/videos.html)

You can also check out our [documentation](https://pennylane.readthedocs.io) for [quickstart
guides](https://pennylane.readthedocs.io/en/stable/introduction/pennylane.html) to using PennyLane,
and detailed developer guides on [how to write your
own](https://pennylane.readthedocs.io/en/stable/development/plugins.html) PennyLane-compatible
quantum device.

## Tutorials and demonstrations

Take a deeper dive into quantum machine learning by exploring cutting-edge algorithms on our [demonstrations
page](https://pennylane.ai/qml/demonstrations.html).

<a href="https://pennylane.ai/qml/demonstrations.html">
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/demos.png" width="900px">
</a>

All demonstrations are fully executable, and can be downloaded as Jupyter notebooks and Python
scripts.

If you would like to contribute your own demo, see our [demo submission
guide](https://pennylane.ai/qml/demos_submission.html).

## Videos

Seeing is believing! Check out [our videos](https://pennylane.ai/qml/videos.html) to learn about
PennyLane, quantum computing concepts, and more. 

<a href="https://pennylane.ai/qml/videos.html">
  <img src="https://raw.githubusercontent.com/PennyLaneAI/pennylane/master/doc/_static/readme/videos.png" width="900px">
</a>

## Contributing to PennyLane

We welcome contributions—simply fork the PennyLane repository, and then make a [pull
request](https://help.github.com/articles/about-pull-requests/) containing your contribution. All
contributors to PennyLane will be listed as authors on the releases. All users who contribute
significantly to the code (new plugins, new functionality, etc.) will be listed on the PennyLane
arXiv paper.

We also encourage bug reports, suggestions for new features and enhancements, and even links to cool
projects or applications built on PennyLane.

See our [contributions
page](https://github.com/PennyLaneAI/pennylane/blob/master/.github/CONTRIBUTING.md) and our
[developer hub](https://pennylane.readthedocs.io/en/stable/development/guide.html) for more
details.

## Support

- **Source Code:** https://github.com/PennyLaneAI/pennylane
- **Issue Tracker:** https://github.com/PennyLaneAI/pennylane/issues

If you are having issues, please let us know by posting the issue on our GitHub issue tracker.

We also have a [PennyLane discussion forum](https://discuss.pennylane.ai)—come join the community
and chat with the PennyLane team.

Note that we are committed to providing a friendly, safe, and welcoming environment for all.
Please read and respect the [Code of Conduct](.github/CODE_OF_CONDUCT.md).

## Authors

PennyLane is the work of [many contributors](https://github.com/PennyLaneAI/pennylane/graphs/contributors).

If you are doing research using PennyLane, please cite [our paper](https://arxiv.org/abs/1811.04968):

> Ville Bergholm et al. *PennyLane: Automatic differentiation of hybrid quantum-classical
> computations.* 2018. arXiv:1811.04968

## License

PennyLane is **free** and **open source**, released under the Apache License, Version 2.0.


%prep
%autosetup -n PennyLane-0.29.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-PennyLane -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.29.1-1
- Package Spec generated