summaryrefslogtreecommitdiff
path: root/python-phate.spec
blob: 7bbe907d29e076dfd251f002955f92845f06b5dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
%global _empty_manifest_terminate_build 0
Name:		python-phate
Version:	1.0.10
Release:	1
Summary:	PHATE
License:	GNU General Public License Version 2
URL:		https://github.com/KrishnaswamyLab/PHATE
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b0/89/e58315c651c9ea02bc51afa04fc7ee74ed015bbf0aecc250ca956f673960/phate-1.0.10.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-future
Requires:	python3-tasklogger
Requires:	python3-graphtools
Requires:	python3-scprep
Requires:	python3-Deprecated
Requires:	python3-s-gd2
Requires:	python3-matplotlib
Requires:	python3-sphinx
Requires:	python3-sphinxcontrib-napoleon
Requires:	python3-nose2
Requires:	python3-anndata
Requires:	python3-coverage
Requires:	python3-coveralls
Requires:	python3-nose

%description
[![Latest PyPI version](https://img.shields.io/pypi/v/phate.svg)](https://pypi.org/project/phate/)
[![Latest Conda version](https://anaconda.org/bioconda/phate/badges/version.svg)](https://anaconda.org/bioconda/phate/)
[![Latest CRAN version](https://img.shields.io/cran/v/phateR.svg)](https://cran.r-project.org/package=phateR)
[![Travis CI Build](https://api.travis-ci.com/KrishnaswamyLab/phate.svg?branch=master)](https://travis-ci.com/KrishnaswamyLab/PHATE)
[![Read the Docs](https://img.shields.io/readthedocs/phate.svg)](https://phate.readthedocs.io/)
[![Nature Biotechnology Publication](https://zenodo.org/badge/DOI/10.1038/s41587-019-0336-3.svg)](https://www.nature.com/articles/s41587-019-0336-3)
[![Twitter](https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow)](https://twitter.com/KrishnaswamyLab)
### Quick Start
If you would like to get started using PHATE, check out our [**guided tutorial in Python**](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb).
If you have loaded a data matrix `data` in Python (cells on rows, genes on columns) you can run PHATE as follows:
    import phate
    phate_op = phate.PHATE()
    data_phate = phate_op.fit_transform(data)
PHATE accepts the following data types: `numpy.array`, `scipy.spmatrix`, `pandas.DataFrame` and `anndata.AnnData`.
### Introduction
PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding) is a tool for visualizing high dimensional data. PHATE uses a novel conceptual framework for learning and visualizing the manifold to preserve both local and global distances.
To see how PHATE can be applied to datasets such as facial images and single-cell data from human embryonic stem cells, check out our publication in Nature Biotechnology.
[Moon, van Dijk, Wang, Gigante et al. **Visualizing Transitions and Structure for Biological Data Exploration**. 2019. *Nature Biotechnology*.](https://doi.org/10.1038/s41587-019-0336-3)
PHATE has been implemented in [Python >=3.5](#python), [MATLAB](https://github.com/KrishnaswamyLab/PHATE/#matlab) and [R](https://github.com/KrishnaswamyLab/phateR/).
### Table of Contents
* [System Requirements](#system-requirements)
* [Installation with pip](#installation-with-pip)
* [Installation from source](#installation-from-source)
* [Quick Start](#quick-start)
* [Tutorial and Reference](#tutorial-and-reference)
* [Help](#help)
### System Requirements
* Windows (>= 7), Mac OS X (>= 10.8) or Linux
* [Python >= 3.5](https://www.python.org/downloads/)
All other software dependencies are installed automatically when installing PHATE.
### Installation with `pip`
The Python version of PHATE can be installed by running the following from a terminal:
    pip install --user phate
Installation of PHATE and all dependencies should take no more than five minutes.
### Installation from source
The Python version of PHATE can be installed from GitHub by running the following from a terminal:
    git clone --recursive git://github.com/KrishnaswamyLab/PHATE.git
    cd PHATE/Python
    python setup.py install --user
### Tutorial and Reference
For more information, read the [documentation on ReadTheDocs](http://phate.readthedocs.io/) or view our tutorials on GitHub: [single-cell RNA-seq](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb), [artificial tree](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/PHATE_tree.ipynb). You can also access interactive versions of these tutorials on Google Colaboratory: [single-cell RNA-seq](https://colab.research.google.com/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb), [artificial tree](https://colab.research.google.com/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/PHATE_tree.ipynb).
### Help
If you have any questions or require assistance using PHATE, please contact us at <https://krishnaswamylab.org/get-help>.

%package -n python3-phate
Summary:	PHATE
Provides:	python-phate
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-phate
[![Latest PyPI version](https://img.shields.io/pypi/v/phate.svg)](https://pypi.org/project/phate/)
[![Latest Conda version](https://anaconda.org/bioconda/phate/badges/version.svg)](https://anaconda.org/bioconda/phate/)
[![Latest CRAN version](https://img.shields.io/cran/v/phateR.svg)](https://cran.r-project.org/package=phateR)
[![Travis CI Build](https://api.travis-ci.com/KrishnaswamyLab/phate.svg?branch=master)](https://travis-ci.com/KrishnaswamyLab/PHATE)
[![Read the Docs](https://img.shields.io/readthedocs/phate.svg)](https://phate.readthedocs.io/)
[![Nature Biotechnology Publication](https://zenodo.org/badge/DOI/10.1038/s41587-019-0336-3.svg)](https://www.nature.com/articles/s41587-019-0336-3)
[![Twitter](https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow)](https://twitter.com/KrishnaswamyLab)
### Quick Start
If you would like to get started using PHATE, check out our [**guided tutorial in Python**](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb).
If you have loaded a data matrix `data` in Python (cells on rows, genes on columns) you can run PHATE as follows:
    import phate
    phate_op = phate.PHATE()
    data_phate = phate_op.fit_transform(data)
PHATE accepts the following data types: `numpy.array`, `scipy.spmatrix`, `pandas.DataFrame` and `anndata.AnnData`.
### Introduction
PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding) is a tool for visualizing high dimensional data. PHATE uses a novel conceptual framework for learning and visualizing the manifold to preserve both local and global distances.
To see how PHATE can be applied to datasets such as facial images and single-cell data from human embryonic stem cells, check out our publication in Nature Biotechnology.
[Moon, van Dijk, Wang, Gigante et al. **Visualizing Transitions and Structure for Biological Data Exploration**. 2019. *Nature Biotechnology*.](https://doi.org/10.1038/s41587-019-0336-3)
PHATE has been implemented in [Python >=3.5](#python), [MATLAB](https://github.com/KrishnaswamyLab/PHATE/#matlab) and [R](https://github.com/KrishnaswamyLab/phateR/).
### Table of Contents
* [System Requirements](#system-requirements)
* [Installation with pip](#installation-with-pip)
* [Installation from source](#installation-from-source)
* [Quick Start](#quick-start)
* [Tutorial and Reference](#tutorial-and-reference)
* [Help](#help)
### System Requirements
* Windows (>= 7), Mac OS X (>= 10.8) or Linux
* [Python >= 3.5](https://www.python.org/downloads/)
All other software dependencies are installed automatically when installing PHATE.
### Installation with `pip`
The Python version of PHATE can be installed by running the following from a terminal:
    pip install --user phate
Installation of PHATE and all dependencies should take no more than five minutes.
### Installation from source
The Python version of PHATE can be installed from GitHub by running the following from a terminal:
    git clone --recursive git://github.com/KrishnaswamyLab/PHATE.git
    cd PHATE/Python
    python setup.py install --user
### Tutorial and Reference
For more information, read the [documentation on ReadTheDocs](http://phate.readthedocs.io/) or view our tutorials on GitHub: [single-cell RNA-seq](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb), [artificial tree](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/PHATE_tree.ipynb). You can also access interactive versions of these tutorials on Google Colaboratory: [single-cell RNA-seq](https://colab.research.google.com/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb), [artificial tree](https://colab.research.google.com/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/PHATE_tree.ipynb).
### Help
If you have any questions or require assistance using PHATE, please contact us at <https://krishnaswamylab.org/get-help>.

%package help
Summary:	Development documents and examples for phate
Provides:	python3-phate-doc
%description help
[![Latest PyPI version](https://img.shields.io/pypi/v/phate.svg)](https://pypi.org/project/phate/)
[![Latest Conda version](https://anaconda.org/bioconda/phate/badges/version.svg)](https://anaconda.org/bioconda/phate/)
[![Latest CRAN version](https://img.shields.io/cran/v/phateR.svg)](https://cran.r-project.org/package=phateR)
[![Travis CI Build](https://api.travis-ci.com/KrishnaswamyLab/phate.svg?branch=master)](https://travis-ci.com/KrishnaswamyLab/PHATE)
[![Read the Docs](https://img.shields.io/readthedocs/phate.svg)](https://phate.readthedocs.io/)
[![Nature Biotechnology Publication](https://zenodo.org/badge/DOI/10.1038/s41587-019-0336-3.svg)](https://www.nature.com/articles/s41587-019-0336-3)
[![Twitter](https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow)](https://twitter.com/KrishnaswamyLab)
### Quick Start
If you would like to get started using PHATE, check out our [**guided tutorial in Python**](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb).
If you have loaded a data matrix `data` in Python (cells on rows, genes on columns) you can run PHATE as follows:
    import phate
    phate_op = phate.PHATE()
    data_phate = phate_op.fit_transform(data)
PHATE accepts the following data types: `numpy.array`, `scipy.spmatrix`, `pandas.DataFrame` and `anndata.AnnData`.
### Introduction
PHATE (Potential of Heat-diffusion for Affinity-based Trajectory Embedding) is a tool for visualizing high dimensional data. PHATE uses a novel conceptual framework for learning and visualizing the manifold to preserve both local and global distances.
To see how PHATE can be applied to datasets such as facial images and single-cell data from human embryonic stem cells, check out our publication in Nature Biotechnology.
[Moon, van Dijk, Wang, Gigante et al. **Visualizing Transitions and Structure for Biological Data Exploration**. 2019. *Nature Biotechnology*.](https://doi.org/10.1038/s41587-019-0336-3)
PHATE has been implemented in [Python >=3.5](#python), [MATLAB](https://github.com/KrishnaswamyLab/PHATE/#matlab) and [R](https://github.com/KrishnaswamyLab/phateR/).
### Table of Contents
* [System Requirements](#system-requirements)
* [Installation with pip](#installation-with-pip)
* [Installation from source](#installation-from-source)
* [Quick Start](#quick-start)
* [Tutorial and Reference](#tutorial-and-reference)
* [Help](#help)
### System Requirements
* Windows (>= 7), Mac OS X (>= 10.8) or Linux
* [Python >= 3.5](https://www.python.org/downloads/)
All other software dependencies are installed automatically when installing PHATE.
### Installation with `pip`
The Python version of PHATE can be installed by running the following from a terminal:
    pip install --user phate
Installation of PHATE and all dependencies should take no more than five minutes.
### Installation from source
The Python version of PHATE can be installed from GitHub by running the following from a terminal:
    git clone --recursive git://github.com/KrishnaswamyLab/PHATE.git
    cd PHATE/Python
    python setup.py install --user
### Tutorial and Reference
For more information, read the [documentation on ReadTheDocs](http://phate.readthedocs.io/) or view our tutorials on GitHub: [single-cell RNA-seq](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb), [artificial tree](http://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/PHATE_tree.ipynb). You can also access interactive versions of these tutorials on Google Colaboratory: [single-cell RNA-seq](https://colab.research.google.com/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb), [artificial tree](https://colab.research.google.com/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/PHATE_tree.ipynb).
### Help
If you have any questions or require assistance using PHATE, please contact us at <https://krishnaswamylab.org/get-help>.

%prep
%autosetup -n phate-1.0.10

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-phate -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu May 18 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.10-1
- Package Spec generated